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Abstract 

This Capstone Project focused on developing an accurate Facial Expression 

Recognition (FER) model by leveraging deep learning techniques, specifically 

Convolutional Neural Networks (CNNs). The objective was to explore, design, 

and implement custom architectures and evaluate their performance against 

existing work. The process involved several stages, such as data preprocessing, 

data augmentation, architecture design, hyperparameter tuning, and performance 

assessment using metrics like accuracy and F1-score while utilizing the FER-

2013 dataset for training. The resulting FER model exhibited competitive 

accuracy levels and generalization capabilities, opening up opportunities for real-

time implementation and application across various domains. 
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1. Introduction 

1.1 Background 

Facial expressions and body language are crucial to human communication, expressing various 

emotions and unspoken messages, which are fundamental to our daily social interactions and 

nonverbal aptitude (Barsoum et al., 2016). The ability to accurately recognize and interpret 

these expressions has numerous applications across multiple domains, including healthcare, 

education, customer behaviour analysis, and advertising (Vemou, Horvath and Zerdick, 2021).  

FER refers to the process of automatically detecting and interpreting human facial expressions 

using computer algorithms and systems (Tian, Kanade and Cohn, 2011). It involves analyzing 

facial features such as movements of the eyebrows, eyes, nose, mouth, and overall facial 

muscle activity to perceive an individual's emotional state or intention (Bettadapura, 2012). 

The rapid growth of computer vision techniques and deep learning algorithms has led to 

considerable FER and image classification breakthroughs in recent years (Bansal et al., 2021). 

Among the most prominent factors contributing to this boost are the appearance of large, high-

quality, publicly available labelled datasets and the empowerment of parallel GPU computing, 

which enabled the transition from CPU-based to GPU-based training, thus allowing for 

significant acceleration in deep models' training (Voulodimos et al., 2018). 

This capstone project aims to contribute to the field of FER by developing a reliable and 

accurate model. In order to implement a system that can identify and categorize facial 

expressions into seven different categories—angry, disgusted, fearful, happy, sad, surprised, 

and neutral—the project heavily focuses on deep learning techniques. 

1.2 Project Concept 

The concept of our project is to develop and evaluate a CNN model for FER. CNNs are a type 

of deep neural network architecture that is particularly effective for processing data with a grid-

like topology, such as images, speech, or video (Goodfellow, Bengio and Courville, 2016). 

By methodically preparing and preprocessing the dataset, exploring different model 

architectures, and fine-tuning hyperparameters, we aim to develop a model that can compete 

with or ideally outperform existing solutions regarding accuracy and generalization 

capabilities. 
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1.3 Roles & Responsibilities 

The responsibilities were divided across the CRISP-DM phases. However, extensive 

collaboration and knowledge sharing happened throughout the project's lifecycle. 

Danrlei Martins was primarily responsible for the initial phases, including Business 

Understanding (Phase 1), Data Understanding (Phase 2), and Data Preparation (Phase 3). 

Responsibilities included defining the project objectives, exploring the dataset, performing 

EDA, and implementing data preprocessing techniques such as augmentation. 

Leonardo Diesel took the lead in the final phases, including Modelling (Phase 4), Evaluation 

(Phase 5), and Deployment (Phase 6). He started exploring and implementing different model 

architectures, conducted hyperparameter tuning, evaluated the model's performance using 

appropriate metrics, and deployed the trained model in a real-time facial expression recognition 

system. 

Despite the division of responsibilities, both team members actively contributed to research, 

experimentation, and decision-making processes across all aspects of the project. Regular 

meetings, discussions, and collaborative coding sessions ensured effective knowledge transfer 

and a joint approach to overcoming challenges and achieving the project's objectives. 

2. Methodology 

We followed the CRISP-DM framework to ensure a structured and systematic approach to our 

FER project. CRISP-DM is a well-known framework for planning, creating, and implementing 

predictive machine learning models, and it provides businesses with the structure they need to 

get better and faster results (Singh and Joshi, 2022; Shearer, 2000). As illustrated in Figure 1, 

the CRISP-DM framework covers six phases (Chapman et al., 2000).  

Here is an overview of what each phase consists of in the context of this capstone project: 

1. Business Understanding (Phase 1): We determined our project's criteria and business 

goals at this first stage. We explored possible use cases for a reliable and accurate FER 

system. We also established the success criteria and the metrics that will be used to 

assess the project's business results. 

2. Data Understanding (Phase 2): We carefully reviewed the FER2013 dataset, which 

includes labelled photos of faces with various expressions. This step identified potential 

problems or obstacles related to the dataset, along with EDA and quality evaluation. 
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We learned more about the dataset's properties, including expression class distribution, 

image resolutions, and any imbalances or discrepancies. 

3. Data Preparation (Phase 3): We performed the necessary data preprocessing steps 

based on the data understanding phase findings. Specifically, we applied data 

augmentation techniques to our image data. Finally, we split the dataset into training, 

validation, and testing sets to ensure proper model evaluation and prevent overfitting. 

4. Modelling (Phase 4): We explored various deep-learning architectures and techniques 

suitable for the FER task. Our primary focus was on pre-trained models and 

implementing hyperparameter tuning to optimize the performance of the custom model. 

5. Evaluation (Phase 5): We evaluated the trained models using appropriate performance 

metrics, such as accuracy, precision, recall, and F1-score. Additionally, we generated 

visualizations like confusion matrices to gain insights into the models' strengths and 

weaknesses in classifying different expressions. 

6. Deployment (Phase 6): We deployed the FER model as a real-time system using 

OpenCV, which aimed to detect live emotions through the webcam. 

 

Figure 1 - CRISP-DM Framework Lifecycle 
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3. Business Understanding (CRISP-DM Phase 1) 

The FER technology industry is expanding and has a lot of promise for companies in various 

sectors. According to Fortune Business Insights (2023), the market value is estimated to reach 

USD 74.80 billion by 2029 from an earlier value of USD 26.25 billion in 2022. Companies 

across sectors are investing in FER due to its diverse applications and potential for human-

machine interaction. 

In recent years, significant research has been done in FER, leveraging deep learning models to 

improve emotion analysis and prediction capabilities (Pise et al., 2022). The potential use cases 

continue to expand as it becomes more sophisticated and accurate. From enhancing customer 

service and user experience by measuring satisfaction and engagement levels to improving 

mental health support by detecting emotional distress to advancing human-robot interactions 

and emotional AI assistants – real-world applications of FER are vast (Samadiani et al., 2019). 

3.1 Problem Definition 

This project aims to develop an accurate FER model using deep learning techniques, 

specifically CNNs. FER is a challenging problem in computer vision and has numerous 

applications across various domains. However, existing models may still have room for 

improvement in accuracy and generalization capabilities. 

3.2 Business Objectives 

The primary objective is to train a CNN model for FER that can accurately recognize different 

facial expressions. The specific objectives are: 

1. Explore and implement a custom CNN architecture for FER. 

2. Evaluate the trained model's performance on the FER-2013 dataset. 

3. Compare the developed model's accuracy with existing work and identify areas for 

potential improvement. 

4. Deploy the trained model for real-time facial expression recognition on live webcam 

feeds. 

3.3 Business Success Criteria 

The following criteria will measure the success of this project: 

• The trained CNN model achieves competitive or superior accuracy compared to 

existing work on the FER-2013 dataset. 
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• The model demonstrates good generalization capabilities across diverse facial 

expressions and demographics. 

• The deployed model can accurately recognize facial expressions in real-time on live 

webcam feeds. 

• The developed model can be further fine-tuned or integrated into broader applications 

or systems involving FER. 

We aim to contribute to FER technology by developing an accurate and robust CNN model, 

which can be a foundation for future research or practical applications in this field, including 

real-time facial expression recognition. 

4. Data Understanding (CRISP-DM Phase 2) 

4.1 Data Collection 

We trained our machine learning models using the FER-2013 dataset. The dataset was 

developed by Pierre Luc Carrier and Aaron Courville and was introduced at the International 

Conference on Machine Learning (ICML) in 2013 (Goodfellow et al., 2013).  

The facial images were retrieved using Google Image Search API, corresponding to different 

emotion keywords. These keywords were combined with words about age, gender, or ethnicity 

to create around 600 strings utilized as search terms for facial images. OpenCV face recognition 

technology was used to create squared boxes surrounding each face in the gathered photos. 

Next, humans filtered out duplicate images, rejected improperly identified images, and adjusted 

cropping as needed (Goodfellow et al., 2013).  

The final dataset contains 35,887 images of facial expressions, each labelled with one of seven 

emotions: anger, disgust, fear, happiness, sadness, surprise, and neutral. 

4.2 Exploratory Data Analysis (EDA) 

We began by examining the distribution of expression categories in both the training and 

testing sets. The code revealed an imbalance in the number of images across different 

expression classes. For instance, in the training set, the 'happy' class had the highest number of 

images (7,215), while the 'disgust' class had the lowest (436). This imbalance could introduce 

bias during model training and affect the overall performance. 

To visualize the distribution, we plotted bar charts representing the number of images per 

expression category for the training and testing sets. As seen in Figures 2 and 3, these charts 
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clearly illustrate the class imbalance, highlighting the need for potential data augmentation or 

resampling techniques during the data preparation phase. 

 

Figure 2 – Distribution of expression categories in the FER2013 training set 

 

 

Figure 3 - Distribution of expression categories in the FER2013 testing set 
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Furthermore, we implemented a function to visualize a random sample of images from each 

expression category in the training set. As seen in Figure 4, this visual inspection allowed us 

to assess the quality and diversity of the data and identify any potential issues or inconsistencies 

within the dataset. 

 

Figure 4 – FER-2013 Sample of Images  

We observed that some images were not accurately classified into correct emotion categories. 

Certain instances revealed images categorized as 'happy' with neutral or non-smiling facial 

expressions. In contrast, others displayed pictures assigned to the 'fear' category that did not 

exhibit characteristics typically associated with that emotion.  
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These misclassifications could impact the model's overall accuracy when deployed, 

highlighting the need for further improvement and optimization of the classification algorithms 

or the training data. In summary, the key findings were: 

• Class Imbalance: The dataset exhibited a significant imbalance in the number of 

images across different expression categories, with some classes being heavily 

underrepresented compared to others. 

• Distribution Consistency: Despite the imbalance, the distribution of expression 

categories was consistent between the training and testing sets, ensuring that the 

model's performance could be evaluated on a representative test set. 

• Image Quality: A visual inspection of the sample images revealed that the dataset 

contained images of varying quality, resolutions, and lighting conditions, which could 

pose challenges during model training and inference. 

5. Data Preparation (CRISP-DM Phase 3) 

We employed data augmentation techniques to address the class imbalance observed in the 

Data Understanding phase and enhance the model's performance. Data augmentation is a 

widely used approach in deep learning models, particularly for image data, as it helps increase 

the training dataset's diversity and size, reduce overfitting, and improve the model's 

generalization capabilities (Shorten and Khoshgoftaar, 2019). 

5.1 Data Augmentation 

We utilized the ImageDataGenerator class from the Keras library to apply various 

augmentation techniques to the training data (TensorFlow, 2024). Using augmentation 

techniques, the ImageDataGenerator class generates new variations of the original images, 

effectively creating a more extensive and diverse dataset (Rosebrock, 2019).  

Table 1 lists the augmentation operations applied to the dataset, and Figure 5 illustrates the 

overall augmentation process. To visualize the effects of data augmentation, we implemented 

a function that displays a random sample image from each expression category alongside five 

augmented versions of the same image.  

As seen in Figure 6, This visual inspection allowed us to ensure that the augmentation 

techniques were applied correctly and introduced the desired variations without compromising 

the integrity of the facial expressions. 
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Table 1 - Data Augmentation Operations Summary 

 

 

Figure 5 – Data Augmentation Process Diagram 

Operation Description Parameters/Range 

Rescaling 
Normalizes pixel values to a range 

between 0 and 1. 
Dividing by 255 

Rotation 
Randomly rotates images to introduce 

orientation variations. 
Up to 15° 

Zoom 
Applies random zoom to simulate 

varying distances and scales. 
Zoom range of 0.1 

Horizontal Flipping 
Randomly flips images horizontally to 

account for left-right variations. 
Random 

Height & Width  

Shifting 

Randomly shifts the image along the 

height and width to introduce 

positional variations. 

10% 

Fill Mode 
Fills in empty areas created by 

transformations. 
‘nearest’ 
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Figure 6 – Data Augmentation Results  

5.2 Preparing Training, Validation & Testing Sets 

After applying data augmentation to the training set, we utilized the flow from directory 

function from the Keras library to load and preprocess the training, validation, and testing sets. 

This function automatically splits the data into batches, applies the specified augmentation 

techniques (for the training set), and performs one-hot encoding of the labels. (TensorFlow, 

2024) 

The data loading function also allowed us to specify several important parameters for efficient 

data loading and preprocessing: 
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• Target Size: All images were resized to a consistent target size of 48x48 pixels, 

matching our input data. 

• Batch Size: We set a batch size of 128 images, determining the number of images 

loaded and preprocessed simultaneously from the directory. 

• Shuffle: The training and testing sets were shuffled to ensure randomization and 

prevent any potential biases introduced by the order of the data. 

• Class Mode: The labels were set to be one-hot encoded, representing the seven 

expression categories as binary vectors. 

The training set was split into a training subset (80%) and a validation subset (20%), ensuring 

the model's performance could be evaluated on unseen data during the training process. This 

validation set acted as a crucial checkpoint, allowing us to monitor the model's performance 

and detect potential overfitting or underfitting issues. 

As for the testing set, only the rescaling operation was applied to ensure consistent 

preprocessing with the training and validation sets. The testing set remained separate and 

untouched by any augmentation techniques, providing an unbiased evaluation of the model's 

generalization capabilities on unseen data. 

The distribution of images across the seven expression categories (angry, disgust, fear, happy, 

neutral, sad, surprise) in each set was as follows: 

• Training Set: 22,968 images 

• Validation Set: 5,741 images 

• Testing Set: 7,178 images 

We ensured the training process had access to a diverse and balanced dataset while maintaining 

a separate, untouched testing set for reliable performance evaluation. These are the 

fundamental rationale for this phase: 

• Increased Data Diversity: The data augmentation techniques introduced variations in 

orientation, scale, and position, effectively increasing the diversity of the training 

dataset. 

• Balanced Class Distributions: We attempted to mitigate the class imbalance issue 

observed in the Data Understanding phase by applying augmentation to the classes. 
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• Efficient Data Loading: The image data generators allowed for efficient loading and 

preprocessing of the data, reducing memory consumption and enabling the training 

process to handle larger datasets. 

The augmented and preprocessed datasets were then used in the subsequent modelling phase, 

where we trained and evaluated various deep-learning architectures. 

6. Modelling (CRISP-DM Phase 4) 

Building a model is a complex process that requires extensive research to identify the 

appropriate library and fine-tune the specific parameters to develop the most accurate solution. 

After exploring numerous libraries and testing various models, we determined that the pre-

trained model, VGG16 from the VGGNet family, was suitable for our project's requirements.  

6.1 Model Architecture 

We chose to work with the VGG16 architecture, a popular DCNN model. It was developed by 

the Visual Geometry Group (VGG) at the University of Oxford and presented at the 

International Conference on Learning Representations (ICLR) 2015 conference (Simonyan and 

Zisserman, 2015). 

The model was pre-trained on the ImageNet dataset, a large-scale database of annotated 

images, allowing it to learn rich visual representations that could be transferred and fine-tuned 

in different domains (Russakovsky et al., 2015). VGG16 earns its name from its architecture, 

consisting of 16 layers, including convolutional, max-pooling and fully connected layers. By 

increasing the depth of the network, the researchers aimed to achieve significant improvements 

in image classification tasks. 

The VGG16 architecture, as illustrated in Figure 7, follows a simple and uniform design. 

Similar to many other architectures, it extracts features from input images. However, it employs 

small 3x3 filters and max-pooling to downsample the feature maps, contributing to its excellent 

performance in various computer vision tasks, such as image classification, segmentation, and 

object detection (Sunyoto et al., 2022; Simonyan and Zisserman, 2015). 
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Figure 7 - VGG-16 Model Architecture (Tammina, 2019) 
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The initial tests with the architecture on default parameters showed promising results, 

achieving 61.02% validation accuracy. This performance was notably better than the 

previously tested models, providing a solid foundation for further model tuning and fine 

adjustments.  

6.2 Transfer Learning & Fine-Tuning 

We used a transfer learning technique to benefit from the knowledge of the pre-trained VGG16 

model and modified it accordingly for our FER task. The process of applying previously 

learned model knowledge to a new task is known as transfer learning (Hosna et al., 2022; 

Tammina, 2019). 

In our project's context, transfer learning involved using the VGG16's knowledge and fine-

tuning it on the FER-2013 dataset. Specifically, we used the pre-trained model as a base and 

removed the top (classification) layer. We then added a new output, a fully connected layer 

with seven units corresponding to the seven expression categories.  

Additionally, we employed the following callback techniques to mitigate overfitting and 

improve the model's generalization capabilities. 

• ReduceLROnPlateau: It can be thought of as a learning rate scheduler. It monitors 

and helps the model to reduce the learning rate when the training stagnates (Keras, 

2024b). 

• EarlyStopping: This method monitors the training, and as soon as a target metric no 

longer improves, it stops the training (Keras, 2024a).  

Finally, we trained the model, allowing it to learn the specific representations of our facial 

expression data. 

6.3 Hyperparameter Optimization (HPO) 

Training deep learning models such as CNN on image datasets is often computationally 

intensive (Forruque Ahmed et al., 2023), and finding the optimal hyperparameters through 

manual trial-and-error is considered impractical. HPO techniques can automate this process, 

reducing the human effort required while improving the models' performance by systematically 

searching for the best hyperparameter configurations. 

To address this challenge, we utilized the Keras Tuner library, which provides a convenient 

and structured interface for performing hyperparameter tuning (O'Malley et al., 2019). 
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According to O'Malley (2020), the library allows for the automated exploration of various 

hyperparameter configurations, facilitating the identification of optimal settings that return the 

best model performance. 

As for the search strategy, we used the built-in RandomSearch, which randomly samples 

hyperparameter configurations from the defined search space (Keras, 2019). The tuner 

evaluated multiple trial models with a different hyperparameter configuration and selected the 

configuration that maximized the validation accuracy.  

The Keras Tuner function was designed to construct the model architecture based on the 

sampled hyperparameters and the base model of VGG16. We defined a comprehensive 

hyperparameter search space that included the following: 

Hyperparameter Search Space Best Value Found 

Dense Layer 2, 3 2 

Units per Dense Layer 256, 512, 1024, 2048, 4096 1024 

Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5 0.4, 0.3 

Optimizer ‘Adam’, ‘sgd ‘sgd’ 

Learning Rate 0.001, 0.0001 0.0001 

Batch Size 128, 256 256 

Activation Function ‘relu’, ‘sigmoid’ ‘relu’ 

Table 2 - Summary of Hyperparameter Tuning Search 

6.4 Challenges Faced & Findings 

The modelling phase involved an iterative process of experimenting with different 

architectures, transfer learning strategies and hyperparameter configurations.  

However, we encountered several challenges while fine-tuning the base model. We started by 

freezing pre-trained layers, which we initially thought could help increase the accuracy as it 

would keep the pre-trained model weights. However, after multiple tries on our base model, 

there was no increase in accuracy, leading us to abandon this approach. 

Another technique we explored was using Global Average Pooling (GAP) instead of flattening 

on the output layer. GAP computes the average value of all elements in the feature map, 

significantly reducing the number of parameters (Lin, Chen and Yan, 2014). This technique 

inherently reduces overfitting, an issue observed while testing models, where the training 

accuracy was usually notably higher than the validation accuracy. Later, we understood that it 
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did not resolve the overfitting problem, but as it reduced the number of parameters, we kept it 

in our model for quicker executions.  

Including batch normalization layers after each dense layer was theoretically beneficial to 

improve our custom model's performance, but once more, it did not work as expected. In our 

understanding, this technique would help to decrease the overall loss, increasing the model's 

accuracy, which did not happen. The results were unsatisfactory when tested, and the idea was 

not considered. 

During our research to improve accuracy, we reviewed our data preparation and discovered the 

Synthetic Minority Oversampling Technique (SMOTE). This method deals with imbalanced 

data by generating new images based on existing ones for better learning and validation 

(Chawla et al., 2002). However, after implementation, the results were unsatisfactory, and we 

dropped this idea due to the lack of accuracy improvement and continuous overfitting. 

As previously mentioned, we chose a combination of Keras Tuner and RandomSearch for 

model tuning due to computational power limitations. Our initial plan was to use Grid Search. 

Still, after a test run, we realized that executing the desired search would take more than a year 

due to hyperparameter complexity. 

Therefore, we defined a comprehensive hyperparameter search space for Keras Tuner and 

tested multiple executions on personal computers and through the Google Colab Platform, 

which helped with available computing power. However, it is essential to note that the best 

hyperparameters found through this search may not be optimal within the possible search space 

as it is a randomized search. 

Finally, we combined the structure of found hyperparameters with the knowledge gathered 

throughout the project. In this project, we discovered that fine-tuning a pre-trained model 

combines applying existing knowledge and trial and error through multiple tests. 

6.5 Proposed Custom CNN Model 

We developed a custom model architecture to improve the default model's performance. The 

custom model was built upon the pre-trained VGG16 model as the base, but we made several 

modifications to the architecture. Firstly, we applied GAP to the output of the VGG16 base 

model, which helped reduce the number of parameters and prevent overfitting. 

Additionally, we added two dense layers with 4096 and 1024 units, respectively, along with 

ReLU activation functions and dropout layers to introduce non-linearity and regularization. 
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The final layer was dense with seven units and a softmax activation function to perform the 

multi-class classification task. 

Based on our research and understanding of our limitations, we were satisfied with our 

findings, which aligned with existing ones. Nevertheless, we believe we could achieve higher 

accuracy with more time and resources. 

7. Evaluation (CRISP-DM Phase 5) 

In the evaluation phase, we assessed the performance of our trained models using various 

metrics to gain insights into their strengths and weaknesses. The primary objective was to 

evaluate the model's ability to accurately classify facial expressions across the seven categories 

present in the dataset. As we dealt with a multiclass classification task on an imbalanced 

dataset, we carefully selected the evaluation metrics to ensure a comprehensive and unbiased 

assessment. 

7.1 Evaluation Metrics & Scoring 

We utilized confusion matrices and classification reports to evaluate the models' performance. 

These techniques helped us spot any possible problems and assess the true predictive capability 

of each model. 

A confusion matrix is a table that summarizes the performance of a classification model by 

comparing the predicted classes with the actual (true) classes. It shows the number of correctly 

classified and misclassified instances for each class (Grandini, Bagli and Visani, 2020). As 

seen in Figure 8, predictions are broken down into four primary categories. 

 

Figure 8 - Confusion Matrix Labels (Draelos, MD, PhD, 2019) 
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We focused on the metrics seen in Table 3, which individually considered each class's metrics 

to address the class imbalance challenge (Müller and Guido, 2017; Kirk, 2017). 

Metric Definition Equation 

Accuracy 

The proportion of correctly 

classified instances out of 

the total cases. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Precision 

The proportion of positively 

predicted genuinely positive 

samples. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 

Measures how many 

positive samples the positive 

predictions capture. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1-Score 

The harmonic mean of 

precision and recall provides 

a balanced evaluation of 

both metrics. 

2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 

Table 3 – Multi-Classification Model Metrics 

7.2 Performance Evaluation Results 

7.2.1 Default Model (VGG16) 

The starting point was the pre-trained VGG16 model, which was used as a baseline model. The 

default model achieved a training accuracy of 66.54% and a validation accuracy of 61.02% on 

our dataset. While these results were reasonable, there was room for improvement. 

 

Figure 9 - Default Model Accuracy & Loss Plot 
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Figure 10 - Baseline Model Classification Report Results 

 

Figure 11 - Default Model Confusion Matrix 

7.2.2 Final Custom Model 

The custom model achieved significantly better results compared to the default model. It 

achieved a training accuracy of 95.37% and a validation accuracy of 66.57%, demonstrating 
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its improved ability to generalize to unseen data. On the test set, the custom model achieved an 

accuracy of 67.11%, outperforming the default model's test accuracy of 61.94%. 

 

Figure 12 - Custom Model Accuracy & Loss Plot 

 

Figure 13 - Custom Model Classification Report 

As seen in Figure 13, the classification report for the custom model showed improved 

precision, recall, and F1-scores across most emotion classes, particularly for the "Disgust" and 

"Neutral" classes, which were challenging for the default model. 
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Figure 14 - Custom Model Confusion Matrix 

7.3 Other Evaluation Visualizations 

To conceptualize the model’s predictions, having a visualization of how it works and not base 

our understanding only on the metrics, we decided to plot a few images, checking when the 

model predicted correctly according to the accurate labels or not. Figure 15 displays some 

randomized samples of when the model made correct emotion predictions.  

 

Figure 15 - Correctly Classified Images 

Also, we displayed some randomized samples again. Still, now, when the model made the 

wrong prediction according to the true labels, We were able to spot that the proper labels are 

not always correct, which can be a personal perspective, and in this case, the prediction could 

be accurate. 
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Figure 16 - Misclassified Images 

The third visualization generated is a technique to understand better how the model works on 

the inside, a snapshot of the black box. This technique is called a saliency map, displayed as a 

heat map, highlighting the most critical pixels for the classification algorithm (Alqaraawi et al., 

2020). Figure 17 shows that the model successfully highlights brighter parts directly over the 

face, leaving aside the parts the model considers unimportant for the FER task. 

 

Figure 17 - Saliency Map of Random Sample of Images 
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7.4 Performance Comparison to Related Work 

Model Accuracy Rate 

(Arriaga, Valdenegro-Toro and Plöger, 2017) 66% 

Custom VGG16 (Our Model) 67.11% 

(Ionescu, Popescu and Grozea, 2013) 67.48% 

(Kusuma, Jonathan and Lim, 2020) 69.40% 

(Cao et al., 2020) 71% 

(Khaireddin and Chen, 2021) 73.28% 

Table 4 - Performance Comparison with Existing Models 

 

8. Deployment (CRISP-DM Phase 6) 

After successfully training and evaluating our facial expression recognition model, we explored 

the deployment of our solution in a real-world scenario. We decided to showcase our model's 

practical application and potential impact in a simple system. 

We developed a real-time FER system using OpenCV, a widely used computer vision library 

(OpenCV, 2024). The system used the custom model, which was loaded and prepared for 

inference. Additionally, we utilized the library’s pre-trained Haar Cascade Classifier, an 

algorithm for object detection, to locate and extract facial regions from the video feed (Tan, 

2024). As seen in Figure 18, we deployed the FER model and successfully detected all the 

emotion categories related to our dataset. 
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Figure 18 – Real-Time FER System Demonstration 

9. Conclusion 

This capstone project successfully developed a robust and accurate FER model using deep 

learning techniques, specifically CNN. Following the structured CRISP-DM framework, we 

systematically addressed each phase, from business understanding and data exploration to 

model development, evaluation, and deployment. 

Through data preprocessing, including data augmentation techniques, we attempted to mitigate 

the class imbalance issue in the FER-2013 dataset and increase the diversity of the training 

data.  
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Many challenges were encountered while searching for the most accurate model possible, 

including computing and processing limitations, and lack of experience with deep learning 

models and neural networks. 

While the proposed model showed promising performance, there is still room for improvement. 

Potential limitations include the inherent biases and poor data quality present in the dataset, the 

need for more extensive computational resources for exhaustive hyperparameter tuning, and 

the challenge of generalizing to diverse real-world scenarios. 

Future work could explore additional data augmentation and preprocessing techniques, 

experiment with other state-of-the-art CNN architectures, and collect, train and merge larger, 

more diverse datasets. 

Appendix 

GitHub Repository Link 

GitHub FER Capstone 

 

Reflective Journals 

Danrlei Martins 

This capstone project was a challenging and rewarding experience. Initially, I was concerned 

about working with deep learning and computer vision, as it was a completely new domain for 

me. However, after much effort to understand its foundational principles, I can say that the 

field of deep learning intrigues me, and I am very curious about how it can impact my favourite 

domain, cybersecurity. 

The data preparation phase was particularly insightful, as I learned the importance of data 

augmentation and preprocessing in achieving better model performance. Exploring different 

augmentation techniques and visualizing their effects on the dataset was fun and exciting.  

The biggest challenge was dealing with the highly imbalanced dataset. I tried to apply some 

methods, such as SMOTE, to deal with that issue, but unfortunately, I was unsuccessful, and I 

understand more research has to be done regarding this aspect.  

Managing other college modules and this project while working full-time was another obstacle, 

so having realistic expectations and setting task priorities was vital to have the project ready 

https://github.com/danrlei-martins-cct/CCT-Capstone-Project-FER
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on time. I could not achieve this work alone, and excellent collaboration with Leonardo was 

critical to succeed in this project. 

Looking back, I am proud of the progress we made and the results we achieved. However, I 

also recognize the limitations of our approach and the potential for further improvement. 

Overall, this capstone project has been an excellent learning experience, and I am grateful for 

the opportunity to work on a real-world problem. The skills improved during this project will 

be very important to my future in the IT industry. 

Leonardo Diesel 

Working in this capstone project was something that challenged me since the beginning. Since 

the brainstorming for the project, me and my project partner tried to go beyond what we thought 

we could reach. It was concerning the challenges of working with neural networks but as the 

project went, I got to understand little by little how it works and its achievements. 

There are many fields in the IT world and Machine Learning is a huge area that can be explored, 

and through the project they got even more evident. All the process of data preparation and 

augmentation was very interesting and to see how that can change in the learning/teaching of 

the model it is definitely a major change for the model.  

Although the data part was very interesting, the challenges I face throughout the building of 

the model were the ones that most spoke to me. The research to find everything that could 

change the model’s accuracy and then the testing of all of them were at times upsetting, but 

very satisfying. It is very hard though when theory does not apply. Of course, working as a 

team was essential to get to a final model, as many times Danrlei came up with very good ideas 

and peace of mind to help and enhance the project.   

Even though our resources were not the best, I look back in a broad view to this extensive 

project and I can say that I am very happy and grateful for our achievements, the knowledge 

acquired and the partnership that I had with Danrlei. Working in a project like this makes me 

believe that we both could be able to work in the field as I feel prepared to face new challenges 

even more difficult. 
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