
CCT College Dublin CCT College Dublin

ARC (Academic Research Collection) ARC (Academic Research Collection)

ICT

Spring 5-2024

Developing a Convolutional Neural Network (CNN) Model for Developing a Convolutional Neural Network (CNN) Model for

Facial Expression Recognition (FER) Facial Expression Recognition (FER)

Danrlei Martins
CCT College Dublin

Leonardo Diesel
CCT College Dublin

Follow this and additional works at: https://arc.cct.ie/ict

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Martins, Danrlei and Diesel, Leonardo, "Developing a Convolutional Neural Network (CNN) Model for
Facial Expression Recognition (FER)" (2024). ICT. 49.
https://arc.cct.ie/ict/49

This Undergraduate Project is brought to you for free and open access by ARC (Academic Research Collection). It
has been accepted for inclusion in ICT by an authorized administrator of ARC (Academic Research Collection). For
more information, please contact debora@cct.ie.

https://arc.cct.ie/
https://arc.cct.ie/ict
https://arc.cct.ie/ict?utm_source=arc.cct.ie%2Fict%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arc.cct.ie%2Fict%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://arc.cct.ie/ict/49?utm_source=arc.cct.ie%2Fict%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:debora@cct.ie

1

Developing a Convolutional Neural Network (CNN) Model for Facial

Expression Recognition (FER)

Danrlei Martins & Leonardo Diesel

A Report Submitted in Partial Fulfilment

of the requirements for the

Degree of

BSc in Computing in IT (4th year)

May 2024

Supervisor: Dr Muhammad Iqbal

2

Abstract

This Capstone Project focused on developing an accurate Facial Expression

Recognition (FER) model by leveraging deep learning techniques, specifically

Convolutional Neural Networks (CNNs). The objective was to explore, design,

and implement custom architectures and evaluate their performance against

existing work. The process involved several stages, such as data preprocessing,

data augmentation, architecture design, hyperparameter tuning, and performance

assessment using metrics like accuracy and F1-score while utilizing the FER-

2013 dataset for training. The resulting FER model exhibited competitive

accuracy levels and generalization capabilities, opening up opportunities for real-

time implementation and application across various domains.

3

Table of Contents

1. Introduction ... 5

1.1 Background ... 5

1.2 Project Concept ... 5

1.3 Roles & Responsibilities ... 6

2. Methodology .. 6

3. Business Understanding (CRISP-DM Phase 1) .. 8

3.1 Problem Definition .. 8

3.2 Business Objectives ... 8

3.3 Business Success Criteria ... 8

4. Data Understanding (CRISP-DM Phase 2) .. 9

4.1 Data Collection .. 9

4.2 Exploratory Data Analysis (EDA) ... 9

5. Data Preparation (CRISP-DM Phase 3) ... 12

5.1 Data Augmentation ... 12

5.2 Preparing Training, Validation & Testing Sets ... 14

6. Modelling (CRISP-DM Phase 4) .. 16

6.1 Model Architecture ... 16

6.2 Transfer Learning & Fine-Tuning .. 18

6.3 Hyperparameter Optimization (HPO) .. 18

6.4 Challenges Faced & Findings ... 19

6.5 Proposed Custom CNN Model ... 20

7. Evaluation (CRISP-DM Phase 5) .. 21

7.1 Evaluation Metrics & Scoring ... 21

7.2 Performance Evaluation Results ... 22

7.2.1 Default Model (VGG16) .. 22

7.2.2 Final Custom Model... 23

7.3 Other Evaluation Visualizations .. 25

7.4 Performance Comparison to Related Work ... 27

8. Deployment (CRISP-DM Phase 6) .. 27

9. Conclusion ... 28

Appendix .. 29

GitHub Repository Link ... 29

Reflective Journals .. 29

References .. 32

4

Table of Figures

Figure 1 - CRISP-DM Framework Lifecycle __ 7

Figure 2 – Distribution of expression categories in the FER2013 training set __________________ 10

Figure 3 - Distribution of expression categories in the FER2013 testing set ___________________ 10

Figure 4 – FER-2013 Sample of Images ___ 11
Figure 5 – Data Augmentation Process Diagram __ 13

Figure 6 – Data Augmentation Results __ 14

Figure 7 - VGG-16 Model Architecture (Tammina, 2019) _________________________________ 17

Figure 8 - Confusion Matrix Labels (Draelos, MD, PhD, 2019) ____________________________ 21

Figure 9 - Default Model Accuracy & Loss Plot __ 22
Figure 10 - Baseline Model Classification Report Results _________________________________ 23

Figure 11 - Default Model Confusion Matrix ___ 23

Figure 12 - Custom Model Accuracy & Loss Plot _______________________________________ 24

Figure 13 - Custom Model Classification Report __ 24
Figure 14 - Custom Model Confusion Matrix __ 25

Figure 15 - Correctly Classified Images ___ 25

Figure 16 - Misclassified Images __ 26

Figure 17 - Saliency Map of Random Sample of Images __________________________________ 26
Figure 18 – Real-Time FER System Demonstration _____________________________________ 28

Terminologies & Definitions

FER = Facial Expression Recognition

FER-2013 = Facial Expression Recognition 2013 Dataset

CNN = Convolutional Neural Network

DCNN = Deep Convolutional Neural Network

CRISP-DM = Cross-Industry Standard Process for Data Mining

EDA = Exploratory Data Analysis

HPO = Hyperparameter Optimization

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

5

1. Introduction

1.1 Background

Facial expressions and body language are crucial to human communication, expressing various

emotions and unspoken messages, which are fundamental to our daily social interactions and

nonverbal aptitude (Barsoum et al., 2016). The ability to accurately recognize and interpret

these expressions has numerous applications across multiple domains, including healthcare,

education, customer behaviour analysis, and advertising (Vemou, Horvath and Zerdick, 2021).

FER refers to the process of automatically detecting and interpreting human facial expressions

using computer algorithms and systems (Tian, Kanade and Cohn, 2011). It involves analyzing

facial features such as movements of the eyebrows, eyes, nose, mouth, and overall facial

muscle activity to perceive an individual's emotional state or intention (Bettadapura, 2012).

The rapid growth of computer vision techniques and deep learning algorithms has led to

considerable FER and image classification breakthroughs in recent years (Bansal et al., 2021).

Among the most prominent factors contributing to this boost are the appearance of large, high-

quality, publicly available labelled datasets and the empowerment of parallel GPU computing,

which enabled the transition from CPU-based to GPU-based training, thus allowing for

significant acceleration in deep models' training (Voulodimos et al., 2018).

This capstone project aims to contribute to the field of FER by developing a reliable and

accurate model. In order to implement a system that can identify and categorize facial

expressions into seven different categories—angry, disgusted, fearful, happy, sad, surprised,

and neutral—the project heavily focuses on deep learning techniques.

1.2 Project Concept

The concept of our project is to develop and evaluate a CNN model for FER. CNNs are a type

of deep neural network architecture that is particularly effective for processing data with a grid-

like topology, such as images, speech, or video (Goodfellow, Bengio and Courville, 2016).

By methodically preparing and preprocessing the dataset, exploring different model

architectures, and fine-tuning hyperparameters, we aim to develop a model that can compete

with or ideally outperform existing solutions regarding accuracy and generalization

capabilities.

6

1.3 Roles & Responsibilities

The responsibilities were divided across the CRISP-DM phases. However, extensive

collaboration and knowledge sharing happened throughout the project's lifecycle.

Danrlei Martins was primarily responsible for the initial phases, including Business

Understanding (Phase 1), Data Understanding (Phase 2), and Data Preparation (Phase 3).

Responsibilities included defining the project objectives, exploring the dataset, performing

EDA, and implementing data preprocessing techniques such as augmentation.

Leonardo Diesel took the lead in the final phases, including Modelling (Phase 4), Evaluation

(Phase 5), and Deployment (Phase 6). He started exploring and implementing different model

architectures, conducted hyperparameter tuning, evaluated the model's performance using

appropriate metrics, and deployed the trained model in a real-time facial expression recognition

system.

Despite the division of responsibilities, both team members actively contributed to research,

experimentation, and decision-making processes across all aspects of the project. Regular

meetings, discussions, and collaborative coding sessions ensured effective knowledge transfer

and a joint approach to overcoming challenges and achieving the project's objectives.

2. Methodology

We followed the CRISP-DM framework to ensure a structured and systematic approach to our

FER project. CRISP-DM is a well-known framework for planning, creating, and implementing

predictive machine learning models, and it provides businesses with the structure they need to

get better and faster results (Singh and Joshi, 2022; Shearer, 2000). As illustrated in Figure 1,

the CRISP-DM framework covers six phases (Chapman et al., 2000).

Here is an overview of what each phase consists of in the context of this capstone project:

1. Business Understanding (Phase 1): We determined our project's criteria and business

goals at this first stage. We explored possible use cases for a reliable and accurate FER

system. We also established the success criteria and the metrics that will be used to

assess the project's business results.

2. Data Understanding (Phase 2): We carefully reviewed the FER2013 dataset, which

includes labelled photos of faces with various expressions. This step identified potential

problems or obstacles related to the dataset, along with EDA and quality evaluation.

7

We learned more about the dataset's properties, including expression class distribution,

image resolutions, and any imbalances or discrepancies.

3. Data Preparation (Phase 3): We performed the necessary data preprocessing steps

based on the data understanding phase findings. Specifically, we applied data

augmentation techniques to our image data. Finally, we split the dataset into training,

validation, and testing sets to ensure proper model evaluation and prevent overfitting.

4. Modelling (Phase 4): We explored various deep-learning architectures and techniques

suitable for the FER task. Our primary focus was on pre-trained models and

implementing hyperparameter tuning to optimize the performance of the custom model.

5. Evaluation (Phase 5): We evaluated the trained models using appropriate performance

metrics, such as accuracy, precision, recall, and F1-score. Additionally, we generated

visualizations like confusion matrices to gain insights into the models' strengths and

weaknesses in classifying different expressions.

6. Deployment (Phase 6): We deployed the FER model as a real-time system using

OpenCV, which aimed to detect live emotions through the webcam.

Figure 1 - CRISP-DM Framework Lifecycle

8

3. Business Understanding (CRISP-DM Phase 1)

The FER technology industry is expanding and has a lot of promise for companies in various

sectors. According to Fortune Business Insights (2023), the market value is estimated to reach

USD 74.80 billion by 2029 from an earlier value of USD 26.25 billion in 2022. Companies

across sectors are investing in FER due to its diverse applications and potential for human-

machine interaction.

In recent years, significant research has been done in FER, leveraging deep learning models to

improve emotion analysis and prediction capabilities (Pise et al., 2022). The potential use cases

continue to expand as it becomes more sophisticated and accurate. From enhancing customer

service and user experience by measuring satisfaction and engagement levels to improving

mental health support by detecting emotional distress to advancing human-robot interactions

and emotional AI assistants – real-world applications of FER are vast (Samadiani et al., 2019).

3.1 Problem Definition

This project aims to develop an accurate FER model using deep learning techniques,

specifically CNNs. FER is a challenging problem in computer vision and has numerous

applications across various domains. However, existing models may still have room for

improvement in accuracy and generalization capabilities.

3.2 Business Objectives

The primary objective is to train a CNN model for FER that can accurately recognize different

facial expressions. The specific objectives are:

1. Explore and implement a custom CNN architecture for FER.

2. Evaluate the trained model's performance on the FER-2013 dataset.

3. Compare the developed model's accuracy with existing work and identify areas for

potential improvement.

4. Deploy the trained model for real-time facial expression recognition on live webcam

feeds.

3.3 Business Success Criteria

The following criteria will measure the success of this project:

• The trained CNN model achieves competitive or superior accuracy compared to

existing work on the FER-2013 dataset.

9

• The model demonstrates good generalization capabilities across diverse facial

expressions and demographics.

• The deployed model can accurately recognize facial expressions in real-time on live

webcam feeds.

• The developed model can be further fine-tuned or integrated into broader applications

or systems involving FER.

We aim to contribute to FER technology by developing an accurate and robust CNN model,

which can be a foundation for future research or practical applications in this field, including

real-time facial expression recognition.

4. Data Understanding (CRISP-DM Phase 2)

4.1 Data Collection

We trained our machine learning models using the FER-2013 dataset. The dataset was

developed by Pierre Luc Carrier and Aaron Courville and was introduced at the International

Conference on Machine Learning (ICML) in 2013 (Goodfellow et al., 2013).

The facial images were retrieved using Google Image Search API, corresponding to different

emotion keywords. These keywords were combined with words about age, gender, or ethnicity

to create around 600 strings utilized as search terms for facial images. OpenCV face recognition

technology was used to create squared boxes surrounding each face in the gathered photos.

Next, humans filtered out duplicate images, rejected improperly identified images, and adjusted

cropping as needed (Goodfellow et al., 2013).

The final dataset contains 35,887 images of facial expressions, each labelled with one of seven

emotions: anger, disgust, fear, happiness, sadness, surprise, and neutral.

4.2 Exploratory Data Analysis (EDA)

We began by examining the distribution of expression categories in both the training and

testing sets. The code revealed an imbalance in the number of images across different

expression classes. For instance, in the training set, the 'happy' class had the highest number of

images (7,215), while the 'disgust' class had the lowest (436). This imbalance could introduce

bias during model training and affect the overall performance.

To visualize the distribution, we plotted bar charts representing the number of images per

expression category for the training and testing sets. As seen in Figures 2 and 3, these charts

10

clearly illustrate the class imbalance, highlighting the need for potential data augmentation or

resampling techniques during the data preparation phase.

Figure 2 – Distribution of expression categories in the FER2013 training set

Figure 3 - Distribution of expression categories in the FER2013 testing set

11

Furthermore, we implemented a function to visualize a random sample of images from each

expression category in the training set. As seen in Figure 4, this visual inspection allowed us

to assess the quality and diversity of the data and identify any potential issues or inconsistencies

within the dataset.

Figure 4 – FER-2013 Sample of Images

We observed that some images were not accurately classified into correct emotion categories.

Certain instances revealed images categorized as 'happy' with neutral or non-smiling facial

expressions. In contrast, others displayed pictures assigned to the 'fear' category that did not

exhibit characteristics typically associated with that emotion.

12

These misclassifications could impact the model's overall accuracy when deployed,

highlighting the need for further improvement and optimization of the classification algorithms

or the training data. In summary, the key findings were:

• Class Imbalance: The dataset exhibited a significant imbalance in the number of

images across different expression categories, with some classes being heavily

underrepresented compared to others.

• Distribution Consistency: Despite the imbalance, the distribution of expression

categories was consistent between the training and testing sets, ensuring that the

model's performance could be evaluated on a representative test set.

• Image Quality: A visual inspection of the sample images revealed that the dataset

contained images of varying quality, resolutions, and lighting conditions, which could

pose challenges during model training and inference.

5. Data Preparation (CRISP-DM Phase 3)

We employed data augmentation techniques to address the class imbalance observed in the

Data Understanding phase and enhance the model's performance. Data augmentation is a

widely used approach in deep learning models, particularly for image data, as it helps increase

the training dataset's diversity and size, reduce overfitting, and improve the model's

generalization capabilities (Shorten and Khoshgoftaar, 2019).

5.1 Data Augmentation

We utilized the ImageDataGenerator class from the Keras library to apply various

augmentation techniques to the training data (TensorFlow, 2024). Using augmentation

techniques, the ImageDataGenerator class generates new variations of the original images,

effectively creating a more extensive and diverse dataset (Rosebrock, 2019).

Table 1 lists the augmentation operations applied to the dataset, and Figure 5 illustrates the

overall augmentation process. To visualize the effects of data augmentation, we implemented

a function that displays a random sample image from each expression category alongside five

augmented versions of the same image.

As seen in Figure 6, This visual inspection allowed us to ensure that the augmentation

techniques were applied correctly and introduced the desired variations without compromising

the integrity of the facial expressions.

13

Table 1 - Data Augmentation Operations Summary

Figure 5 – Data Augmentation Process Diagram

Operation Description Parameters/Range

Rescaling
Normalizes pixel values to a range

between 0 and 1.
Dividing by 255

Rotation
Randomly rotates images to introduce

orientation variations.
Up to 15°

Zoom
Applies random zoom to simulate

varying distances and scales.
Zoom range of 0.1

Horizontal Flipping
Randomly flips images horizontally to

account for left-right variations.
Random

Height & Width

Shifting

Randomly shifts the image along the

height and width to introduce

positional variations.

10%

Fill Mode
Fills in empty areas created by

transformations.
‘nearest’

14

Figure 6 – Data Augmentation Results

5.2 Preparing Training, Validation & Testing Sets

After applying data augmentation to the training set, we utilized the flow from directory

function from the Keras library to load and preprocess the training, validation, and testing sets.

This function automatically splits the data into batches, applies the specified augmentation

techniques (for the training set), and performs one-hot encoding of the labels. (TensorFlow,

2024)

The data loading function also allowed us to specify several important parameters for efficient

data loading and preprocessing:

15

• Target Size: All images were resized to a consistent target size of 48x48 pixels,

matching our input data.

• Batch Size: We set a batch size of 128 images, determining the number of images

loaded and preprocessed simultaneously from the directory.

• Shuffle: The training and testing sets were shuffled to ensure randomization and

prevent any potential biases introduced by the order of the data.

• Class Mode: The labels were set to be one-hot encoded, representing the seven

expression categories as binary vectors.

The training set was split into a training subset (80%) and a validation subset (20%), ensuring

the model's performance could be evaluated on unseen data during the training process. This

validation set acted as a crucial checkpoint, allowing us to monitor the model's performance

and detect potential overfitting or underfitting issues.

As for the testing set, only the rescaling operation was applied to ensure consistent

preprocessing with the training and validation sets. The testing set remained separate and

untouched by any augmentation techniques, providing an unbiased evaluation of the model's

generalization capabilities on unseen data.

The distribution of images across the seven expression categories (angry, disgust, fear, happy,

neutral, sad, surprise) in each set was as follows:

• Training Set: 22,968 images

• Validation Set: 5,741 images

• Testing Set: 7,178 images

We ensured the training process had access to a diverse and balanced dataset while maintaining

a separate, untouched testing set for reliable performance evaluation. These are the

fundamental rationale for this phase:

• Increased Data Diversity: The data augmentation techniques introduced variations in

orientation, scale, and position, effectively increasing the diversity of the training

dataset.

• Balanced Class Distributions: We attempted to mitigate the class imbalance issue

observed in the Data Understanding phase by applying augmentation to the classes.

16

• Efficient Data Loading: The image data generators allowed for efficient loading and

preprocessing of the data, reducing memory consumption and enabling the training

process to handle larger datasets.

The augmented and preprocessed datasets were then used in the subsequent modelling phase,

where we trained and evaluated various deep-learning architectures.

6. Modelling (CRISP-DM Phase 4)

Building a model is a complex process that requires extensive research to identify the

appropriate library and fine-tune the specific parameters to develop the most accurate solution.

After exploring numerous libraries and testing various models, we determined that the pre-

trained model, VGG16 from the VGGNet family, was suitable for our project's requirements.

6.1 Model Architecture

We chose to work with the VGG16 architecture, a popular DCNN model. It was developed by

the Visual Geometry Group (VGG) at the University of Oxford and presented at the

International Conference on Learning Representations (ICLR) 2015 conference (Simonyan and

Zisserman, 2015).

The model was pre-trained on the ImageNet dataset, a large-scale database of annotated

images, allowing it to learn rich visual representations that could be transferred and fine-tuned

in different domains (Russakovsky et al., 2015). VGG16 earns its name from its architecture,

consisting of 16 layers, including convolutional, max-pooling and fully connected layers. By

increasing the depth of the network, the researchers aimed to achieve significant improvements

in image classification tasks.

The VGG16 architecture, as illustrated in Figure 7, follows a simple and uniform design.

Similar to many other architectures, it extracts features from input images. However, it employs

small 3x3 filters and max-pooling to downsample the feature maps, contributing to its excellent

performance in various computer vision tasks, such as image classification, segmentation, and

object detection (Sunyoto et al., 2022; Simonyan and Zisserman, 2015).

17

Figure 7 - VGG-16 Model Architecture (Tammina, 2019)

18

The initial tests with the architecture on default parameters showed promising results,

achieving 61.02% validation accuracy. This performance was notably better than the

previously tested models, providing a solid foundation for further model tuning and fine

adjustments.

6.2 Transfer Learning & Fine-Tuning

We used a transfer learning technique to benefit from the knowledge of the pre-trained VGG16

model and modified it accordingly for our FER task. The process of applying previously

learned model knowledge to a new task is known as transfer learning (Hosna et al., 2022;

Tammina, 2019).

In our project's context, transfer learning involved using the VGG16's knowledge and fine-

tuning it on the FER-2013 dataset. Specifically, we used the pre-trained model as a base and

removed the top (classification) layer. We then added a new output, a fully connected layer

with seven units corresponding to the seven expression categories.

Additionally, we employed the following callback techniques to mitigate overfitting and

improve the model's generalization capabilities.

• ReduceLROnPlateau: It can be thought of as a learning rate scheduler. It monitors

and helps the model to reduce the learning rate when the training stagnates (Keras,

2024b).

• EarlyStopping: This method monitors the training, and as soon as a target metric no

longer improves, it stops the training (Keras, 2024a).

Finally, we trained the model, allowing it to learn the specific representations of our facial

expression data.

6.3 Hyperparameter Optimization (HPO)

Training deep learning models such as CNN on image datasets is often computationally

intensive (Forruque Ahmed et al., 2023), and finding the optimal hyperparameters through

manual trial-and-error is considered impractical. HPO techniques can automate this process,

reducing the human effort required while improving the models' performance by systematically

searching for the best hyperparameter configurations.

To address this challenge, we utilized the Keras Tuner library, which provides a convenient

and structured interface for performing hyperparameter tuning (O'Malley et al., 2019).

19

According to O'Malley (2020), the library allows for the automated exploration of various

hyperparameter configurations, facilitating the identification of optimal settings that return the

best model performance.

As for the search strategy, we used the built-in RandomSearch, which randomly samples

hyperparameter configurations from the defined search space (Keras, 2019). The tuner

evaluated multiple trial models with a different hyperparameter configuration and selected the

configuration that maximized the validation accuracy.

The Keras Tuner function was designed to construct the model architecture based on the

sampled hyperparameters and the base model of VGG16. We defined a comprehensive

hyperparameter search space that included the following:

Hyperparameter Search Space Best Value Found

Dense Layer 2, 3 2

Units per Dense Layer 256, 512, 1024, 2048, 4096 1024

Dropout Rate 0.1, 0.2, 0.3, 0.4, 0.5 0.4, 0.3

Optimizer ‘Adam’, ‘sgd ‘sgd’

Learning Rate 0.001, 0.0001 0.0001

Batch Size 128, 256 256

Activation Function ‘relu’, ‘sigmoid’ ‘relu’

Table 2 - Summary of Hyperparameter Tuning Search

6.4 Challenges Faced & Findings

The modelling phase involved an iterative process of experimenting with different

architectures, transfer learning strategies and hyperparameter configurations.

However, we encountered several challenges while fine-tuning the base model. We started by

freezing pre-trained layers, which we initially thought could help increase the accuracy as it

would keep the pre-trained model weights. However, after multiple tries on our base model,

there was no increase in accuracy, leading us to abandon this approach.

Another technique we explored was using Global Average Pooling (GAP) instead of flattening

on the output layer. GAP computes the average value of all elements in the feature map,

significantly reducing the number of parameters (Lin, Chen and Yan, 2014). This technique

inherently reduces overfitting, an issue observed while testing models, where the training

accuracy was usually notably higher than the validation accuracy. Later, we understood that it

20

did not resolve the overfitting problem, but as it reduced the number of parameters, we kept it

in our model for quicker executions.

Including batch normalization layers after each dense layer was theoretically beneficial to

improve our custom model's performance, but once more, it did not work as expected. In our

understanding, this technique would help to decrease the overall loss, increasing the model's

accuracy, which did not happen. The results were unsatisfactory when tested, and the idea was

not considered.

During our research to improve accuracy, we reviewed our data preparation and discovered the

Synthetic Minority Oversampling Technique (SMOTE). This method deals with imbalanced

data by generating new images based on existing ones for better learning and validation

(Chawla et al., 2002). However, after implementation, the results were unsatisfactory, and we

dropped this idea due to the lack of accuracy improvement and continuous overfitting.

As previously mentioned, we chose a combination of Keras Tuner and RandomSearch for

model tuning due to computational power limitations. Our initial plan was to use Grid Search.

Still, after a test run, we realized that executing the desired search would take more than a year

due to hyperparameter complexity.

Therefore, we defined a comprehensive hyperparameter search space for Keras Tuner and

tested multiple executions on personal computers and through the Google Colab Platform,

which helped with available computing power. However, it is essential to note that the best

hyperparameters found through this search may not be optimal within the possible search space

as it is a randomized search.

Finally, we combined the structure of found hyperparameters with the knowledge gathered

throughout the project. In this project, we discovered that fine-tuning a pre-trained model

combines applying existing knowledge and trial and error through multiple tests.

6.5 Proposed Custom CNN Model

We developed a custom model architecture to improve the default model's performance. The

custom model was built upon the pre-trained VGG16 model as the base, but we made several

modifications to the architecture. Firstly, we applied GAP to the output of the VGG16 base

model, which helped reduce the number of parameters and prevent overfitting.

Additionally, we added two dense layers with 4096 and 1024 units, respectively, along with

ReLU activation functions and dropout layers to introduce non-linearity and regularization.

21

The final layer was dense with seven units and a softmax activation function to perform the

multi-class classification task.

Based on our research and understanding of our limitations, we were satisfied with our

findings, which aligned with existing ones. Nevertheless, we believe we could achieve higher

accuracy with more time and resources.

7. Evaluation (CRISP-DM Phase 5)

In the evaluation phase, we assessed the performance of our trained models using various

metrics to gain insights into their strengths and weaknesses. The primary objective was to

evaluate the model's ability to accurately classify facial expressions across the seven categories

present in the dataset. As we dealt with a multiclass classification task on an imbalanced

dataset, we carefully selected the evaluation metrics to ensure a comprehensive and unbiased

assessment.

7.1 Evaluation Metrics & Scoring

We utilized confusion matrices and classification reports to evaluate the models' performance.

These techniques helped us spot any possible problems and assess the true predictive capability

of each model.

A confusion matrix is a table that summarizes the performance of a classification model by

comparing the predicted classes with the actual (true) classes. It shows the number of correctly

classified and misclassified instances for each class (Grandini, Bagli and Visani, 2020). As

seen in Figure 8, predictions are broken down into four primary categories.

Figure 8 - Confusion Matrix Labels (Draelos, MD, PhD, 2019)

22

We focused on the metrics seen in Table 3, which individually considered each class's metrics

to address the class imbalance challenge (Müller and Guido, 2017; Kirk, 2017).

Metric Definition Equation

Accuracy

The proportion of correctly

classified instances out of

the total cases.

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Precision

The proportion of positively

predicted genuinely positive

samples.

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall

Measures how many

positive samples the positive

predictions capture.

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1-Score

The harmonic mean of

precision and recall provides

a balanced evaluation of

both metrics.

2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)

Table 3 – Multi-Classification Model Metrics

7.2 Performance Evaluation Results

7.2.1 Default Model (VGG16)

The starting point was the pre-trained VGG16 model, which was used as a baseline model. The

default model achieved a training accuracy of 66.54% and a validation accuracy of 61.02% on

our dataset. While these results were reasonable, there was room for improvement.

Figure 9 - Default Model Accuracy & Loss Plot

23

Figure 10 - Baseline Model Classification Report Results

Figure 11 - Default Model Confusion Matrix

7.2.2 Final Custom Model

The custom model achieved significantly better results compared to the default model. It

achieved a training accuracy of 95.37% and a validation accuracy of 66.57%, demonstrating

24

its improved ability to generalize to unseen data. On the test set, the custom model achieved an

accuracy of 67.11%, outperforming the default model's test accuracy of 61.94%.

Figure 12 - Custom Model Accuracy & Loss Plot

Figure 13 - Custom Model Classification Report

As seen in Figure 13, the classification report for the custom model showed improved

precision, recall, and F1-scores across most emotion classes, particularly for the "Disgust" and

"Neutral" classes, which were challenging for the default model.

25

Figure 14 - Custom Model Confusion Matrix

7.3 Other Evaluation Visualizations

To conceptualize the model’s predictions, having a visualization of how it works and not base

our understanding only on the metrics, we decided to plot a few images, checking when the

model predicted correctly according to the accurate labels or not. Figure 15 displays some

randomized samples of when the model made correct emotion predictions.

Figure 15 - Correctly Classified Images

Also, we displayed some randomized samples again. Still, now, when the model made the

wrong prediction according to the true labels, We were able to spot that the proper labels are

not always correct, which can be a personal perspective, and in this case, the prediction could

be accurate.

26

Figure 16 - Misclassified Images

The third visualization generated is a technique to understand better how the model works on

the inside, a snapshot of the black box. This technique is called a saliency map, displayed as a

heat map, highlighting the most critical pixels for the classification algorithm (Alqaraawi et al.,

2020). Figure 17 shows that the model successfully highlights brighter parts directly over the

face, leaving aside the parts the model considers unimportant for the FER task.

Figure 17 - Saliency Map of Random Sample of Images

27

7.4 Performance Comparison to Related Work

Model Accuracy Rate

(Arriaga, Valdenegro-Toro and Plöger, 2017) 66%

Custom VGG16 (Our Model) 67.11%

(Ionescu, Popescu and Grozea, 2013) 67.48%

(Kusuma, Jonathan and Lim, 2020) 69.40%

(Cao et al., 2020) 71%

(Khaireddin and Chen, 2021) 73.28%

Table 4 - Performance Comparison with Existing Models

8. Deployment (CRISP-DM Phase 6)

After successfully training and evaluating our facial expression recognition model, we explored

the deployment of our solution in a real-world scenario. We decided to showcase our model's

practical application and potential impact in a simple system.

We developed a real-time FER system using OpenCV, a widely used computer vision library

(OpenCV, 2024). The system used the custom model, which was loaded and prepared for

inference. Additionally, we utilized the library’s pre-trained Haar Cascade Classifier, an

algorithm for object detection, to locate and extract facial regions from the video feed (Tan,

2024). As seen in Figure 18, we deployed the FER model and successfully detected all the

emotion categories related to our dataset.

28

Figure 18 – Real-Time FER System Demonstration

9. Conclusion

This capstone project successfully developed a robust and accurate FER model using deep

learning techniques, specifically CNN. Following the structured CRISP-DM framework, we

systematically addressed each phase, from business understanding and data exploration to

model development, evaluation, and deployment.

Through data preprocessing, including data augmentation techniques, we attempted to mitigate

the class imbalance issue in the FER-2013 dataset and increase the diversity of the training

data.

29

Many challenges were encountered while searching for the most accurate model possible,

including computing and processing limitations, and lack of experience with deep learning

models and neural networks.

While the proposed model showed promising performance, there is still room for improvement.

Potential limitations include the inherent biases and poor data quality present in the dataset, the

need for more extensive computational resources for exhaustive hyperparameter tuning, and

the challenge of generalizing to diverse real-world scenarios.

Future work could explore additional data augmentation and preprocessing techniques,

experiment with other state-of-the-art CNN architectures, and collect, train and merge larger,

more diverse datasets.

Appendix

GitHub Repository Link

GitHub FER Capstone

Reflective Journals

Danrlei Martins

This capstone project was a challenging and rewarding experience. Initially, I was concerned

about working with deep learning and computer vision, as it was a completely new domain for

me. However, after much effort to understand its foundational principles, I can say that the

field of deep learning intrigues me, and I am very curious about how it can impact my favourite

domain, cybersecurity.

The data preparation phase was particularly insightful, as I learned the importance of data

augmentation and preprocessing in achieving better model performance. Exploring different

augmentation techniques and visualizing their effects on the dataset was fun and exciting.

The biggest challenge was dealing with the highly imbalanced dataset. I tried to apply some

methods, such as SMOTE, to deal with that issue, but unfortunately, I was unsuccessful, and I

understand more research has to be done regarding this aspect.

Managing other college modules and this project while working full-time was another obstacle,

so having realistic expectations and setting task priorities was vital to have the project ready

https://github.com/danrlei-martins-cct/CCT-Capstone-Project-FER

30

on time. I could not achieve this work alone, and excellent collaboration with Leonardo was

critical to succeed in this project.

Looking back, I am proud of the progress we made and the results we achieved. However, I

also recognize the limitations of our approach and the potential for further improvement.

Overall, this capstone project has been an excellent learning experience, and I am grateful for

the opportunity to work on a real-world problem. The skills improved during this project will

be very important to my future in the IT industry.

Leonardo Diesel

Working in this capstone project was something that challenged me since the beginning. Since

the brainstorming for the project, me and my project partner tried to go beyond what we thought

we could reach. It was concerning the challenges of working with neural networks but as the

project went, I got to understand little by little how it works and its achievements.

There are many fields in the IT world and Machine Learning is a huge area that can be explored,

and through the project they got even more evident. All the process of data preparation and

augmentation was very interesting and to see how that can change in the learning/teaching of

the model it is definitely a major change for the model.

Although the data part was very interesting, the challenges I face throughout the building of

the model were the ones that most spoke to me. The research to find everything that could

change the model’s accuracy and then the testing of all of them were at times upsetting, but

very satisfying. It is very hard though when theory does not apply. Of course, working as a

team was essential to get to a final model, as many times Danrlei came up with very good ideas

and peace of mind to help and enhance the project.

Even though our resources were not the best, I look back in a broad view to this extensive

project and I can say that I am very happy and grateful for our achievements, the knowledge

acquired and the partnership that I had with Danrlei. Working in a project like this makes me

believe that we both could be able to work in the field as I feel prepared to face new challenges

even more difficult.

31

32

References

Alqaraawi, A., Schuessler, M., Philipp Weiß, Costanza, E. and Berthouze, N. (2020). Evaluating Saliency

Map Explanations for Convolutional Neural Networks: A User Study. arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.2002.00772.

Arriaga, O., Valdenegro-Toro, M. and Plöger, P. (2017). Real-time Convolutional Neural Networks for

Emotion and Gender Classification. [online] arXiv (Cornell University).

doi:https://doi.org/10.48550/arxiv.1710.07557.

Bansal, M., Kumar, M., Sachdeva, M. and Mittal, A. (2021). Transfer Learning for Image Classification

Using VGG19: Caltech-101 Image Data Set. Journal of Ambient Intelligence and Humanized Computing,

[online] 14, pp.3609–3620. doi:https://doi.org/10.1007/s12652-021-03488-z.

Barsoum, E., Zhang, C., Ferrer, C.C. and Zhang, Z. (2016). Training deep networks for facial expression

recognition with crowd-sourced label distribution. Proceedings of the 18th ACM International

Conference on Multimodal Interaction. [online] doi:https://doi.org/10.1145/2993148.2993165.

Bartz, E., Bartz-Beielstein, T., Zaefferer, M. and Mersmann, O. (2023). Hyperparameter Tuning for

Machine and Deep Learning with R. 1st ed. [online] Singapore: Springer. Available at:

https://link.springer.com/book/10.1007/978-981-19-5170-1 [Accessed 12 May 2024].

Bettadapura, V. (2012). Face Expression Recognition and Analysis: The State of the Art. arXiv (College

of Computing, Georgia Institute of Technology). [online]

doi:https://doi.org/10.48550/arxiv.1203.6722.

Cao, W., Feng, Z., Zhang, D. and Huang, Y. (2020). Facial Expression Recognition via a CBAM Embedded

Network. Procedia Computer Science, [online] 174, pp.463–477.

doi:https://doi.org/10.1016/j.procs.2020.06.115.

Chapman, P., Kerber, R., Clinton, J., Khabaza, T., Reinartz, T., Wirth, R. and Shearer, C. (2000). CRISP-

DM 1.0 step-by-step data mining guide. [online] Available at: https://www.kde.cs.uni-kassel.de/wp-

content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pdf [Accessed 20 Apr. 2024]

Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002). SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence Research, 16(16), pp.321–357.

doi:https://doi.org/10.1613/jair.953.

Draelos, MD, PhD, R. (2019). Measuring Performance: The Confusion Matrix. [online] Glass Box.

Available at: https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-

matrix/ [Accessed 16 May 2024].

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. Automated Machine Learning,

[online] pp.3–33. doi:https://doi.org/10.1007/978-3-030-05318-5_1.

Fortune Business Insights (2023). Global Emotion Detection and Recognition Market Size, Share &

Growth Analysis By Type, By Application with Regional Forecast, 2022-2029. [online] Available at:

https://www.fortunebusinessinsights.com/industry-reports/emotiondetection-and-recognition-

market-101326 [Accessed 5 Mar. 2024].

Forruque Ahmed, S., Bin, S., Hassan, M., Rodela Rozbu, M., Ishtiak, T., Rafa, N., Mofijur, M., Shawkat,

A. and Gandomi, A.H. (2023). Deep learning modelling techniques: current progress, applications,

https://doi.org/10.48550/arxiv.2002.00772
https://doi.org/10.48550/arxiv.1710.07557
https://doi.org/10.1007/s12652-021-03488-z
https://doi.org/10.1145/2993148.2993165
https://link.springer.com/book/10.1007/978-981-19-5170-1
https://doi.org/10.48550/arxiv.1203.6722
https://doi.org/10.1016/j.procs.2020.06.115
https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pd
https://www.kde.cs.uni-kassel.de/wp-content/uploads/lehre/ws2012-13/kdd/files/CRISPWP-0800.pd
https://doi.org/10.1613/jair.953
https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://glassboxmedicine.com/2019/02/17/measuring-performance-the-confusion-matrix/
https://doi.org/10.1007/978-3-030-05318-5_1
https://www.fortunebusinessinsights.com/industry-reports/emotiondetection-and-recognition-market-101326
https://www.fortunebusinessinsights.com/industry-reports/emotiondetection-and-recognition-market-101326

33

advantages, and challenges. Artificial Intelligence Review, [online] 56, pp.3521–13617.

doi:https://doi.org/10.1007/s10462-023-10466-8.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. [online] MIT Press. Available at:

https://www.deeplearningbook.org [Accessed 30 Apr. 2024].

Goodfellow, I.J., Erhan, D., Luc Carrier, P., Courville, A., Mirza, M., Hamner, B., Cukierski, W., Tang, Y.,

Thaler, D., Lee, D.-H., Zhou, Y., Ramaiah, C., Feng, F., Li, R., Wang, X., Athanasakis, D., Shawe-Taylor,

J., Milakov, M., Park, J. and Ionescu, R. (2013). Challenges in representation learning: A report on three

machine learning contests. ICONIP 2013: Neural Information Processing, [online] 64, pp.117–124.

doi:https://doi.org/10.48550/arXiv.1307.0414.

Grandini, M., Bagli, E. and Visani, G. (2020). Metrics for Multi-Class Classification: an Overview. arXiv

(Cornell University). [online] doi:https://doi.org/10.48550/arxiv.2008.05756.

Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z. and Azim, M.A. (2022). Transfer learning: a friendly

introduction. Journal of Big Data, [online] 9(1). doi:https://doi.org/10.1186/s40537-022-00652-w.

Ionescu, R., Popescu, M. and Grozea, C. (2013). Local Learning to Improve Bag of Visual Words Model

for Facial Expression Recognition. In Proceedings of ICML Workshop on Challenges in Representation

Learning. [online] Available at:

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97088cbbac03bf8e9a209403f09

7bc9af46a4ebb [Accessed 17 May 2024].

Keras (n.d.). Keras documentation: Optimizers. [online] keras.io. Available at:

https://keras.io/api/optimizers/ [Accessed 4 May 2024].

Keras (2019). Keras documentation: RandomSearch Tuner. [online] keras.io. Available at:

https://keras.io/api/keras_tuner/tuners/random/ [Accessed 7 May 2024].

Keras (2024a). Keras documentation: EarlyStopping. [online] keras.io. Available at:

https://keras.io/api/callbacks/early_stopping/ [Accessed 4 May 2024].

Keras (2024b). Keras documentation: ReduceLROnPlateau. [online] keras.io. Available at:

https://keras.io/api/callbacks/reduce_lr_on_plateau/ [Accessed 4 May 2024].

Khaireddin, Y. and Chen, Z. (2021). Facial Emotion Recognition: State of the Art Performance on

FER2013. arXiv (Cornell University). doi:https://doi.org/10.48550/arxiv.2105.03588.

Kirk, M. (2017). Thoughtful Machine Learning with Python: A Test-Driven Approach. 1st ed. [online]

Sebastopol: O'Reilly Media. Available at: https://moodle.cct.ie/mod/resource/view.php?id=37605

[Accessed 14 May 2024].

Kusuma, G.P., Jonathan, J. and Lim, A.P. (2020). Emotion Recognition on FER-2013 Face Images Using

Fine-Tuned VGG-16. Advances in Science, Technology and Engineering Systems Journal, [online] 5(6),

pp.315–322. doi:https://doi.org/10.25046/aj050638.

Lin, M., Chen, Q. and Yan, S. (2014). Network In Network. [online] arXiv.org.

doi:https://doi.org/10.48550/arXiv.1312.4400.

Müller, A.C. and Guido, S. (2017). Introduction to Machine Learning with Python: A Guide for Data

Scientists. 1st ed. [online] Beijing: O'Reilly Media. Available at:

https://moodle.cct.ie/mod/resource/view.php?id=37688 [Accessed 14 May 2024].

https://doi.org/10.1007/s10462-023-10466-8
https://www.deeplearningbook.org/
https://doi.org/10.48550/arXiv.1307.0414
https://doi.org/10.48550/arxiv.2008.05756
https://doi.org/10.1186/s40537-022-00652-w
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97088cbbac03bf8e9a209403f097bc9af46a4ebb%20
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=97088cbbac03bf8e9a209403f097bc9af46a4ebb%20
https://keras.io/api/optimizers/
https://keras.io/api/keras_tuner/tuners/random/
https://keras.io/api/callbacks/early_stopping/
https://keras.io/api/callbacks/reduce_lr_on_plateau/
https://doi.org/10.48550/arxiv.2105.03588
https://moodle.cct.ie/mod/resource/view.php?id=37605
https://doi.org/10.25046/aj050638
https://doi.org/10.48550/arXiv.1312.4400
https://moodle.cct.ie/mod/resource/view.php?id=37688

34

O'Malley, T. (2020). Hyperparameter Tuning with Keras Tuner. [online] TensorFlow Blog. Available at:

https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html [Accessed 11

May 2024].

O'Malley, T., Bursztein, E., Long, J., Chollet, F., Jin, H. and Invernizzi, L. (2019). Keras documentation:

KerasTuner. [online] keras.io. Available at: https://keras.io/keras_tuner/. [Accessed 04 May 2024].

OpenCV (2024). OpenCV: Introduction. [online] Open Source Computer Vision. Available at:

https://docs.opencv.org/4.x/d1/dfb/intro.html [Accessed 17 May 2024].

Pise, A.A., Alqahtani, M.A., Verma, P., K, P., Karras, D.A., S, P. and Halifa, A. (2022). Methods for Facial

Expression Recognition with Applications in Challenging Situations. Computational Intelligence &

Neuroscience, [online] pp.1–17. doi:https://doi.org/10.1155/2022/9261438.

Rosebrock, A. (2019). Keras ImageDataGenerator and Data Augmentation. [online] PyImageSearch.

Available at: https://pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-

augmentation/ [Accessed 30 Apr. 2024].

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,

Bernstein, M., Berg, A.C. and Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision, [online] 115(3), pp.211–252.

doi:https://doi.org/10.1007/s11263-015-0816-y.

Samadiani, Huang, Cai, Luo, Chi, Xiang and He (2019). A Review on Automatic Facial Expression

Recognition Systems Assisted by Multimodal Sensor Data. Sensors, [online] 19(8), p.1863.

doi:https://doi.org/10.3390/s19081863.

Shorten, C. and Khoshgoftaar, T.M. (2019). A survey on Image Data Augmentation for Deep Learning.

Journal of Big Data, [online] 6(1). doi:https://doi.org/10.1186/s40537-019-0197-0.

Simonyan, K. and Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image

Recognition. Computer Science: Computer Vision and Pattern Recognition. [online]

doi:https://doi.org/10.48550/arXiv.1409.1556.

Singh, V.K. and Joshi, K. (2022). Integrating Fairness in Machine Learning Development Life Cycle: Fair

CRISP-DM. e-Service Journal, [online] 14(2), pp.1–24. doi:https://doi.org/10.2979/esj.2022.a886946

Shearer, C. (2000) The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data

Warehousing, [online] 5(4), pp.13–22. Available at: https://mineracaodedados.wordpress.com/wp-

content/uploads/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf

[Accessed 20 Apr. 2024]

Sunyoto, A., Pristyanto, Y., Setyanto, A., Alarfaj, F., Almusallam, N. and Alreshoodi, M. (2022). The

Performance Evaluation of Transfer Learning VGG16 Algorithm on Various Chest X-ray Imaging

Datasets for COVID-19 Classification. International Journal of Advanced Computer Science and

Applications, [online] 13(9), pp.196–203. doi:https://doi.org/10.14569/ijacsa.2022.0130923.

Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural Network for

Classifying Images. International Journal of Scientific and Research Publications (IJSRP), [online] 9(10).

doi:https://doi.org/10.29322/ijsrp.9.10.2019.p9420.

Tan, A. (2024). Using Haar Cascade for Object Detection. [online] Machine Learning Mastery. Available

at: https://machinelearningmastery.com/using-haar-cascade-for-object-detection/ [Accessed 17 May

2024].

https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html
https://keras.io/keras_tuner/
https://docs.opencv.org/4.x/d1/dfb/intro.html
https://doi.org/10.1155/2022/9261438
https://pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/
https://pyimagesearch.com/2019/07/08/keras-imagedatagenerator-and-data-augmentation/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3390/s19081863
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.2979/esj.2022.a886946
https://mineracaodedados.wordpress.com/wp-content/uploads/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf
https://mineracaodedados.wordpress.com/wp-content/uploads/2012/04/the-crisp-dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf
https://doi.org/10.14569/ijacsa.2022.0130923
https://doi.org/10.29322/ijsrp.9.10.2019.p9420
https://machinelearningmastery.com/using-haar-cascade-for-object-detection/

35

TensorFlow (2024). ImageDataGenerator. [online] TensorFlow. Available at:

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

[Accessed 30 Apr. 2024].

Tian, Y., Kanade, T. and Cohn, J.F. (2011). Facial Expression Recognition. Handbook of Face

Recognition, [online] pp.487–519. doi:https://doi.org/10.1007/978-0-85729-932-1_19

Voulodimos, A., Doulamis, N., Doulamis, A. and Protopapadakis, E. (2018). Deep Learning for

Computer Vision: a Brief Review. Computational Intelligence and Neuroscience, 2018, [online] pp.1–

13. doi:https://doi.org/10.1155/2018/7068349.

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://doi.org/10.1007/978-0-85729-932-1_19
https://doi.org/10.1155/2018/7068349

	Developing a Convolutional Neural Network (CNN) Model for Facial Expression Recognition (FER)
	Recommended Citation

	tmp.1721054985.pdf.B1Azg

