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Abstract 

Accurate One Day-Ahead Demand Forecasting (ODADF) is crucial for electrical network reliability, 
the environment, and trading markets. While individual models face challenges in achieving accurate 
predictions, ensemble learning models have emerged as potential solution. They have achieved 
success in ODADF in several countries; however, there has been no research conducted for the Irish 
power system. Therefore, research objectives were formed, to develop a framework of ensemble 
learning models, evaluate their performance, and examine their potential for ODADF in Ireland, to fill 
the gap. Experimentation, and CRISP-DM were selected as primary research methodology, and project 
management framework, respectively. The development of the framework considered a balance 
between performance and computational complexity of the configurations. Three stacking 
approaches were considered, such as classifiers and regressors as meta-learners, and heuristic rules. 
Various potential base-learners were considered, and two methods of supervised problem creation, 
based on Similar Day (SD) and Moving Window (MW) approaches, were proposed to enhance their 
pattern recognition in data. The cause-and-effect relationship between ensemble configurations and 
performance metrics for ODADF in Ireland was established, and the integration method emerged as 
the primary causal variable. 

The research methodology was divided into three phases, such as data preparation, 
experimentation with ensembles architectures, and validation of results. Data preparation included 
temporal features extraction, Daylight-Saving Time removal, and replacement of missing data and 
outliers. The results were validated by performance metrics, visual comparison to SDs from 
neighbouring weeks, and distributions before and after the processing. Investigations into lagged 
weekly and daily demand, and window size were performed for SD and MW approaches, respectively. 
Following investigation into correlation between lagged weather variables and demand; temperature, 
relative humidity and wind speed, lagged by 39-hours were selected as exogenous features. As 
weather data was distributed locally, three approaches for representative stations were proposed. 
Scaling of time series, and encoding of temporal features to cyclical and vector formats, were found 
beneficial to ODADF by correlation study and distributions comparison. Feature selection was 
performed separately for SD and MW approaches. Given that data from year 2020 was found to be an 
outlier, datasets were split primarily into training and testing datasets, covering years 2014-2019, and 
2021-2022, respectively. Experimentation with base-learners and three integration methods was 
performed. Training and testing datasets were further split into training and validation subsets, 
covering years 2014-2018 and 2019, and 2021-2022, respectively. Bayesian optimisation with 10-fold 
cross-validation was selected for hyperparameters tuning. Potential base-learners were tuned, trained 
and evaluated on training datasets, and the twenty most promising ones were selected as base-
learners. They showed fluctuations in their MAPE across different days of the week, months and hours. 
Potential ensembles were tuned, trained and evaluated on base-learners’ predictions for years 2015-
2019 and training datasets, respectively. In the validation phase, base-learners and classification-
based ensembles with hyperparameters inferred from previous phase, were refitted on unseen data, 
and the base-learners’ predictions for years 2021-2022, respectively, and evaluated on year 2022. 

The results proved the high potential of classification-based ensembles for ODADF in Ireland. 
Ensembles of twenty base-learners, with SVM and MLP classifiers as meta-learners, stood out as the 
most effective solution for ODADF in Ireland. They both achieved the lowest MAPE 1.91%, which was 
11.2% improvement in comparison to the best base-learner, SVM (SD) registering MAPE 2.15%. While 
introduction of SD and MW approaches amplified the diversity of the base-learners’ predictions, 
incorporating virtual weather stations benefited the performance of classification-based ensembles. 
They not only harnessed the combined strengths but also mitigated the potential inconsistencies 
found in individual base-learners, achieving predictions aligned with the distribution of actual 
demand. Finally, while this research addressed the gap in knowledge, further work, using wider variety 
of base-learners and their integration methods, is needed to comprehensively bridge this gap.  

GitHub: https://github.com/karol-skowronski/Capstone                                     Wordcount: 17,383  
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1. Introduction 

1.1.    Background 

Short-Time Load Forecasting (STLF) refers to the prediction of power demand within a relatively 

short time horizon, typically spanning hours to a few days ahead. One Day-Ahead Demand Forecasting 

(ODADF) is a particular case of STLF, where the hourly mean of power system demand is predicted for 

the following day. Accurate ODADF is crucial for electrical network reliability, the environment, and 

trading markets. Instantaneous balance, between generation and demand of electricity, must be 

maintained by system operators at all times. This is the responsibility of the EirGrid in the Republic of 

Ireland, who operates the electricity grid, including interconnection to neighbouring grids, and running 

the wholesale electricity market. Implications of imbalance are negative, both technically and 

financially. Many state-of-the-art models struggle to achieve accurate predictions in the constantly 

changing conditions, in which the power system operates. The growth in weather-dependent 

renewable sources (RES), coupled with climate change, the advent of contemporary appliances, and 

changes in customer habits, challenge the system operation. While the work of conventional power 

plants can be controlled at system level, RESs are solely dependent on weather conditions. Moreover, 

low-scale RES generation, connected to the grid at distribution level, while being outside of the system 

operator’s control, decreases customer power demand from the grid. Furthermore, the increasing 

number of electric vehicles, combined with changes in customer habits due to remote working, alters 

the demand patterns. 

The dynamic conditions of power system operations challenge many state-of-the-art STLF 

methods, ODADF in particular (Table 1.1). Traditional models are unable to capture non-linear 

patterns, and are sensitive to initial conditions, outliers and abrupt changes in data. Auto-regressive 

models assume linear relationship between past and future observations, require stationary time 

series, and cannot capture sudden changes in patterns. Machine learning models suffer from system 

depended phenomenon, lack of interpretation, and require challenging selection of appropriate 

features and hyperparameters. Deep learning models require selection of appropriate architecture, 

hyperparameters, and training strategies, which is challenging and significantly impacts their 

performance. They have higher standard deviation of accuracy and sensitivity to reduction of training 

data compared to machine learning models. Moreover, they require large amount of training data and 

high computational resources. Hybrid models require complex process of selecting and integrating 

individual models to attain efficiency. Moreover, determining optimal combination of weights or rules 

of integration requires careful experimentation and validation, and hyperparameter tuning is 

complex. They need more data and are more computationally expensive than their components. 
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Authors (year) 
Dataset 

(size) 
Model 

Reported Results 
Limitations 

Metric Value 

Sethi and Kleiss 
(2020) 

US 
(1 year) 

HWES MAPE 4.60% 
Unable to capture non-linear patterns. 
Need careful selection of parameters. 

Shahare et al (2023) 
Metropolitan 

Area 
(5 years) 

SES MAE 1.400 
Sensitive to initial conditions, outliers 

and abrupt changes in data. 

Dudek (2015) 
Poland 

(2 years) 
ARIMA 

MAPE 

2.42% 
Assumes linear relationship between 

past and future observations. 

Al-Musaylh et al 
(2018) 

Australia 
(5 years) 

2.16% Require stationary time series. 

Sethi and Kleissl 
(2020) 

US 
(1 year) 

ARIMA 
SARIMA 

3.80% 
3.20% 

Unable to capture sudden changes 
in patterns in data. 

Dudek (2015) 
Poland 

(2 years) 
MLR 

MAPE 

2.81% Long training time. 

Tsekouras, Kanellos 
and Mastorakis 

(2015) 

Greece 
(1-7 years) 

MLP 1.78% 
Not possible to generalise findings 

due to system depended phenomenon. 

Al-Musaylh et al 
(2018) 

Australia 
(5 years) 

MARS 
SVR 

1.27% 
1.71% 

Increased memory requirements 

Foster (2020) 
N. Ireland 
(7 years) MLR 

MLP 

2.53% 
2.62% 

Challenging selection of appropriate 
features and hyperparameters, 

which significantly impacts 
model performance. 

Foster (2020) 
New York 
(6 years) 

4.34% 
3.71% 

Kathirgamanathan 
et al (2022) 

New England 
(6 years) 

MLP 4.14% 
High computational complexity 

of SVR and MLP models. 

Osowski et al (2022) 
Poland 

(6 years) 

SVR 
MLP 
RBF 

2.17% 
2.08% 
2.26% 

Difficult to understand 
underlying relationship between 

the input features and predicted values. 

Shahare et al (2023) 
M. Area 
(5 years) 

SVR 
MLP 

MAE 
0.088 
0.079 

Increased memory requirements. 

Han et al (2019) 
China 

(4 years) 
CNN 
LSTM 

MAPE 

3.30% 
2.70% 

Sensitive to reduction of data 
compared to MLP models, 

with LSTM being most affected. 
Sethi and Kleissl 

(2020) 
US 

(1 year) 
LSTM 2.10% 

Foster (2020) 
N. Ireland 
(7 years) 

LSTM 
CNN 

3.65% 
3.02% 

Challenging selection 
of appropriate architecture, 

hyperparameters, and training strategies, 
which significantly impacts 

their performance. 
Foster (2020) 

New York 
(6 years) 

4.12% 
3.71% 

Osowski et al (2022) 
Poland 

(6 years) 
LSTM 1.63% 

Require large amount of training data 
and high computational resources 

Kathigamanathan 
et al (2022) 

New England 
(6 years) 

CNN 
LSTM 

3.91% 
3.89% 

High standard deviation of accuracy 
and sensitivity to reduction of data, 

with LSTM being most affected. 

Dudek (2015) 
Poland 

(2 years) 
LR+DT 

MAPE 

2.53% 
Challenging selection and integration 

of individual models. 

Dudek (2016) 
Poland 

(4 years) SD+PCR 
SD+PLSR 

1.34% 
1.35% 

Determining optimal combination 
of weights or rules of integration 
requires careful experimentation 

and validation. 
Dudek (2016) 

Australia 
(4 years) 

2.83% 
3.00% 

He (2017) 
China 

(3 years) 
CNN+LSTM 

1.41% 
Complex hyperparameter tuning. 

Computationally expensive. 

Shahare et al (2023) 
M. Area 
(5 years) 

MAE 0.029 
Interpretation more challenging 

than their components. 

Table 1.1. Summary of recent research in one day-ahead power demand forecasting by traditional, auto-regressive, 
machine learning, deep learning and hybrid models, published after year 2014. 

The decreased accuracy of ODADF negatively impacts system reliability, the environment, and 

translates to financial losses of system operators. Their customers, however, are interested in clean 



3 

 

energy, delivered to their premises uninterruptedly, and at low cost. The most promising solution to 

increase ODADF accuracy is to use an ensemble of individual predictors. Motivated by the importance 

and currency of the problem, as well as the gap in the research for Ireland, by doing this project I hope 

to establish, that an optimal ensemble learning approach can not only be successfully applied for 

ODADF in Ireland, but also combine the strengths, and offset the limitations of both, single and hybrid 

models. Fortunately, ensemble learning has been applied successfully to increase performance of 

forecasting in many areas. Moreover, that approach has already been proven to work for STLF and 

ODADF in several countries. However, there is no research in that area for the power system in Ireland. 

Hence, there is an opportunity for this research to fill that gap.  

1.2.    Research Objectives 

The primary aim of this research is to experiment with ensemble learning models’ architectures 

in order to evaluate their potential to ODADF in Ireland. Therefore, the research objectives are: 

• To develop a framework of ensemble learning models for ODADF in Ireland. This includes pre-

selection of variety of machine and deep learning models, including those able to incorporate 

temporal and weather factors, by evaluating their performance, and comparing their metrics. 

Subsequently, a framework of ensemble learning models that combines predictions of preselected 

base-learners and their integrations techniques will be developed for ODADF in Ireland. The 

framework will provide a foundation for the primary research. 

• To examine the performance of ensembles to ODADF in Ireland by comparing their metrics. This 

includes experimentation with selected architectures of ensemble models and measurement of 

influence of their configuration to ODADF performance metrics. Each configuration will be trained, 

validated and tested using real-world data, and its performance metrics will be automatically recorded 

as function of day of the week, month and hour. The performance dataset will enable the examination 

of cause-and-effect relationships between variables and allow further examination of the potential in 

ensemble learning architectures to ODADF in Ireland. 

• To evaluate the potential of ensemble learning application to ODADF in Ireland. This includes 

evaluation of performance metrics of ensemble learning models against each other and their base-

learners, which will enable the examination of their potential to ODADF in Ireland. Subsequently, 

based on findings of the research, the most optimal ensemble learning architectures will be 

determined and validated on unseen data. Finally, limitation of the research and recommendations 

for future research and development will be provided. 
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1.3.    Outline of the Thesis 

The remainder of this thesis is organised as follows. Chapter 2 presents an overview of the 

literature. Chapter 3 covers methodology, including project management framework, limitations and 

ethical considerations of this research. Chapter 4 describes power demand and weather factors data 

collection, initial data extraction, exploration, and detection of distortions, missing values and outliers 

in time series. Chapter 5 covers power demand data preparation, including temporal features 

extraction, daylight-saving time distortion removal, missing data and outliers’ replacement, 

exploratory data analysis, followed by definition of supervised learning problems from time series, 

using similar day and moving window approaches. Chapter 6 presents multivariate exploratory data 

analysis, correlations between lagged weather variables and power demand, finding representative 

weather stations, feature selection, followed by supervised learning problems creation. Chapters 7-9 

present results of experimentation, including base-learners modelling and evaluation in Chapter 7, 

modelling and evaluation of various ensembles in Chapter 8, and validation of classification-based 

ensembles’ potential to ODADF in Ireland in Chapter 9. Chapter 10 concludes the thesis by 

summarising the research and its limitations, and providing recommendations for future investigation. 
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2. Literature Review 

One Day-Ahead Demand Forecasting (ODADF) is the most prominent application of data analytics 

in the electricity sector, crucial for system reliability and trading markets (Scheidt et al., 2020).  

Instantaneous balance between supply and demand of electricity must be maintained by power 

system operators at all time (Hong and Fan, 2016). Implications of imbalance are negative both 

technically and financially. While overestimation leads to starting excessive number of generators, 

underestimation forces purchasing energy abroad at higher price (Foster, 2020). Therefore, accurate 

ODADF is essential to support the decision making processes of market participants and system 

operators, especially in the relatively small and isolated system with increasing penetration of 

Renewable Energy Sources (RES) in Ireland (EirGrid Group, 2022). 

Researchers have been working to improve the accuracy of both STLF and ODADF, and so far, 

invented many state-of-the-art methods (Ahmad et al., 2022). Nevertheless, the conditions of power 

system operation are constantly changing. Main factors, such as growth in weather-dependant RES, 

new technologies used by customers, climate change, and changes in customer habits, challenge the 

system operation. Hence, existing models have been found to struggle achieving accurate predictions 

in the new reality (Foster, 2020). In recent years, approaches based on statistical, machine and deep 

learning algorithms have been very popular in that task (Osowski et al., 2022). There is an ongoing 

debate on superiority of one method over another. The most promising solution, however, is to 

combine individual solutions into an ensemble of predictors. The following literature review aims to 

identify the most promising models to serve as base-learners for ODADF in Ireland, highlighting their 

benefits and limitations. Moreover, it seeks to determine exogenous factors affecting the demand. To 

achieve the aim, it was divided into five main sections as follows: single and complex models in STLF, 

forecasting competitions, issues with comparison of findings, and conclusion. To assess the 

performance of various forecasting models, Mean Average Percentage Error (MAPE) is used as the 

evaluation metric, as it has been widely accepted in the literature (Hyndman and Koehler, 2006). 

2.1.    Single Models in Short-Term Demand Forecasting 

The first section of the literature review explored the main single methodologies developed and 

applied to STLF, including traditional, autoregressive, machine and deep learning models.  

2.1.1. From Naïve, through Moving Average to Exponential Smoothing Models 

The naïve forecast is the simplest method, where the future values repeat the last observation. 

Therefore, ignoring any patterns in time series, it produces horizontal line. To overcome pure 
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memorisation, Moving Average (MA) takes the mean on the latest number of steps as the forecast. A 

Seasonal (S) naïve model looks back a number of steps for each forecast, blindly mimicking the last 

seasonal cycle. Exponential Smoothing (ETS) combines intuition of naïve models, adding weighted 

average, where the weights decrease exponentially with the distance into the history. The most known 

are three models: Single (SES), Double (DES) and Holt-Winters Exponential Smoothing (HWES). They 

have been widely used for time series forecasting since 1950s (Joseph, 2022). 

For example, Taylor and McSharry (2007) used HWES to half-hourly ODADF for twenty-one 

european countries, based on years 1988-1993, split 5:1, achieving MAPE 2.40%. Study by Sethi and 

Kleissl (2020) used HWES to hourly ODADF for US, based on year 2017, split 3:1, achieving MAPE 

4.60%. Another study by Shahare et al. (2023) used SES to hourly ODADF for a metropolitan area, 

based on years 2017-2021, split 3:1, achieving MAE of 1.40. 

Two of above three studies used HWES and reported MAPE, while the other used SES model and 

reported MAE for ODADF.  Additionally, all studies were carried in different regions and timeframes. 

Therefore, it was not possible to compare them directly. Generally, ETS were relatively simple and 

computationally efficient algorithms, responsive to recent changes. Despite their ability to capture 

trend and seasonality components, they exhibited several limitations. ETS made assumption of 

stationarity and was unable to capture complex non-linear patterns in the data. However, STLF 

exhibits non-stationary characteristics, such as seasonality and trend, which adversely impacted the 

performance of ETS models (Hyndman and Athanasopoulos, 2018). Furthermore, they were sensitive 

to initial conditions, outliers, and abrupt changes in the data (Chen and Liu, 1993), and required careful 

selection of smoothing parameters (Ord, Koehler and Snyder, 1997). Moreover, ETS simplicity limited 

their performance relative to advanced techniques (Al-Musaylh et al., 2018). 

2.1.2. Autoregressive Models 

In addition to ETS, family of Auto-Regressive (AR) models stood the test of time and are still one 

of the most popular classical methods of forecasting. Their primary advantage was the ability to 

capture temporal dependencies within the data. While ETS was modelled around trend and 

seasonality, AR models rely on autocorrelation (Joseph, 2022). Three variants of AR are widely used in 

STLF. The first one, Auto-Regressive Integrated Moving Average (ARIMA) model, combines AR and 

moving average (MA) components with differencing to model non-stationary (Hyndman and 

Athanasopoulos, 2018). The AR and MA components capture the dependency between current and 

preceding observations, and the observations and a residual error, respectively (Brockwell and Davis, 

2002). The integrated (I) component applies differencing to make the time series stationary (Shumway 
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and Stoffer, 2017). Two other variants are SARIMA and SARIMAX, where ARIMA model is extended by 

Seasonal (S) component (Chatfield, 2015), and external factors (X) into the model (Tashman, 2000). 

For example, Taylor and McSharry (2007) used AR and ARIMA to half-hourly ODADF for twenty-

one european countries, based on years 1988-1993, split 5:1, achieving MAPE 3.30% and 2.80%, 

respectively, which were both worse than the HWES MAPE 2.40% from previous section. Study by 

Dudek (2015) used ARIMA to hourly ODADF for Poland, based on two years, split 12:1, achieving MAPE 

2.42%. Study by Al-Musaylh et al. (2018) used ARIMA to hourly ODADF for Australia, based on years 

2012-2016, split 4:1, achieving MAPE 2.16%. Another study (Sethi and Kleissl, 2020) used ARIMA and 

SARIMA to hourly ODADF for US, based on year 2017, split 3:1, achieving MAPE 3.80% and 3.20%, 

respectively, both better than HWES MAPE 4.60% from previous section. 

Above studies employed AR, ARIMA and SARIMA and reported their MAPE for ODADF in various 

regions and timeframes. The results highlighted the context-dependent performance of those models. 

Moreover, although ability of SARIMAX to successfully capture temporal dependencies, handling 

trends and seasonality, and incorporating exogenous variables in STLF, they had their specific 

limitations. They assumed linear relationship between past and future observations (Zhang, 2003), 

and required the stationary time series. Moreover, they could not capture sudden changes in patterns 

(Enders, 2014). To address above limitations, researchers have proposed various extensions and 

modifications to AR models, as well as hybrid approach, combining them with other techniques. 

2.1.3. Machine Learning Models 

Machine Learning (ML) models gained significant attention due to their ability to capture 

complex patterns and non-linear relationships within data, making them suitable for STLF. This 

subsection discussed some of the most widely used ML models, including Linear Regression (LR), 

Multi-Linear Regression (MLR), Support Vector Regressor (SVR), Decision Trees (DT), k-Nearest 

Neighbors (k-NN), and Multi-Layer Perceptron (MLP). SVR can handle nonlinear relationships in data 

through the use of kernel functions (Vapnik, 2013). DT recursively split the input data into subsets, 

based on feature values, creating a tree-like structure with nodes representing decisions and branches 

the outcomes (Quinlan, 2014). The k-NN algorithm is a non-parametric ML method predicting new 

instance based on the outputs of its k-nearest neighbours in the training data, considering specific 

distance metric (Altman, 1992). MLP, being Artificial Neural Network (ANN) comprise interconnected 

neurons organised in layers. They can learn non-linear relationships in data through the process of 

adjusting weights and biases during training (Haykin, 2010). 
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For example, Hinman and Hickey (2009) used twenty-four LR models to hourly ODADF for US, 

based on years 2004-2009, split 5:1, achieving MAPE 3.75%, better than HWES MAPE 4.60% (Sethi and 

Kleissl, 2020). Study by Hong et al. (2010) used MLR to hourly ODADF for US, based on years 2005-

2008, split 3:1, achieving MAPE 4.56%, similar to HWES MAPE 4.60% (Sethi and Kleissl, 2020). Study 

by Fan and Hyndman (2012) used MLR to half-hourly ODADF for Australia, based on years 2004-2009, 

split 5:1, achieving MAPE 1.68%, better than ARIMA MAPE 2.16% (Al-Musaylh et al., 2018). Study by 

Ceperic, Ceperic and Baric (2013) used SVR to hourly ODADF for New England, based on years 2003-

2006, split 3:1, achieving MAPE 1.31%, and for US, based on years 1988-1992, split 4:1, achieving 

MAPE 2.05%. Study by Dudek (2015) used MLR to hourly ODADF for Poland, based on two years, split 

12:1, achieving MAPE 2.81%, worse than ARIMA MAPE 2.42%.  Study by Tsekouras, Kanellos and 

Mastorakis (2015) used MLP to hourly ODADF for Greece, based on years in range from one to seven, 

split 9:1, achieving MAPE 1.78%. Researchers claimed that it was not possible to generalise their 

findings to other STLF case studies due to every case being distinct. That phenomenon of neural 

networks had already been discovered by Lu, Wu and Vemuri (1993) and named as system 

dependency. Study by Al-Musaylh et al. (2018) used Multivariate Adaptive Regression Splines (MARS), 

and SVR to hourly ODADF for Australia, based on years 2012-2016, split 4:1, achieving MAPE 1.27% 

and 1.71%, respectively, both beating ARIMA MAPE 2.16%. Foster (2020) used MLR and MLP to hourly 

ODADF for Northern Ireland, based on years 2013-2019, achieving MAPE 2.53% and 2.62%, 

respectively; and for New York, based on years 2012-2017, achieving MAPE 4.34% and 3.71%, 

respectively. MLP performed worse for Northern Ireland, and better for New York than MLR model. 

Study by Kathirgamanathan et al. (2022) used MLP to forecast hourly demand for New England, based 

on years 2004-2009, split 5:1, achieving MAPE 4.14%, worse than SVR MAPE 2.05% (Ceperic, Ceperic 

and Baric, 2013). Study by Osowski et al. (2022) used seven ML models to hourly ODADF for Poland, 

based on years 2014-2019, with split 7:3. The first three models, being SVR with Gaussian kernel, MLP 

and Radial Basis Function (RBF) network, achieved MAPE 2.27%, 2.08% and 2.26%, respectively. Those 

models were doubled employing autoencoder, a deep neural solution that reduces dimensionality of 

input data, achieving MAPE 2.13%, 1.96% and 1.81%, respectively. The seventh model was Self-

Organising Kohonen Network Application (SOKNA), achieving MAPE 2.34%. RBF with autoencoder 

achieved the best result. All models outperformed ARIMA MAPE 2.42% (Dudek, 2015). Another study 

(Shahare et al., 2023) used SVR and MLP to hourly ODADF in metropolitan area, based on years 2017-

2021, split 3:1, achieving MAE 0.088 and 0.079, respectively, both better than SES MAE 1.40. 

Above studies employed various ML algorithms for ODADF for different countries and 

timeframes. Despite their ability to capture complex patterns and non-linear relationships in the data 

and promising results of ML models in STLF, they had experienced challenges and limitations. One of 
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the major challenges was the selection of appropriate features and hyperparameters, which 

significantly impacted model performance (Zhang, Eddy Patuwo and Y. Hu, 1998). Additionally, it was 

difficult to understand the underlying relationship between the input features and predicted values 

using SVR and MLP (Vellido, Martín-Guerrero and Lisboa, 2012). Finally, the computational complexity 

of SVR and MLP models was high, leading to longer training time and increased memory requirements 

(Goodfellow, Bengio and Courville, 2016). 

2.1.4. Deep Learning Models 

Deep Learning (DL) models have gained significant attention in recent years due to their ability 

to learn complex and abstract patterns from large volumes of data. This subsection discussed Long 

Short-Term Memory (LSTM) as implementation of Recurrent Neural Network (RNN), and 

Convolutional Neural Network (CNN). RNN are type of ANN designed to handle sequential data by 

incorporating feedback connections, allowing them to maintain hidden states and capture temporal 

dependencies in data (Elman, 1990). LSTM are advanced type of RNN specifically designed to address 

the vanishing gradient problem that occurs when training RNN on long sequences (Hochreiter and 

Schmidhuber, 1997). CNN are type of ANN designed to primarily handle images, utilising convolutional 

layers, reducing the need for manual feature extraction, followed by dense layers (LeCun, Bengio and 

Hinton, 2015). Nevertheless, they have been successfully implemented to STLF, ODADF in particular. 

For example, Sethi and Kleissl (2020) used LSTM to hourly ODADF for US, based on year 2017, 

split 3:1, achieving MAPE 2.10%, better than HWES, ARIMA and SARIMA MAPE 4.60%, 3.80% and 

3.20%, respectively. Study by Han et al. (2019) used CNN and LSTM for hourly ODADF in China, based 

on years 2014-2017, split 4:1, achieving 3.3% and 2.7%, respectively. Foster (2020) used LSTM and 

CNN to hourly ODADF for Northern Ireland, based on years 2013-2019, achieving MAPE 3.65% and 

3.02%, respectively, and for New York, based on years 2012-2017, achieving MAPE 4.12% and 3.71%, 

respectively. For Northern Ireland, DL performed worse than MLR and better than MLP MAPE 2.53% 

and 4.34%, respectively. For New York LSTM performed worse, and CNN performed better than MLR 

and equally to MLP MAPE 4.34% and 3.71%, respectively. Study by Osowski et al. (2022) used LSTM to 

hourly ODADF for Poland, based on years 2014-2019, split 7:3, achieving MAPE 1.63%, better than all 

seven ML models from previous section MAPE from 1.81% to 2.34%. Study by Kathirgamanathan et 

al. (2022) used CNN and LSTM to hourly ODADF for New England, based on years 2004-2009, split 5:1, 

achieving MAPE 3.91% and 3.89%, respectively. Researchers found that DL models had better accuracy 

but higher standard deviation compared to MLP models, with LSTM being the most affected. 

Reduction of training data degraded the prediction and increased standard deviation for all models, 

with DL being more sensitive than MLP. Another study by Shahare et al. (2023) used LSTM and CNN 
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to hourly ODADF for metropolitan area, based on years 2017-2021, split 3:1, achieving MAE 0.051 and 

0.067, respectively, better than SES, SVR and MLP MAE 1.40, 0.088 and 0.079, respectively. 

Above studies employed LSTM and CNN algorithms to ODADF for different countries and 

timeframes. CNN and LSTM performed equally well as MLP but with higher standard deviation, with 

LSTM being the most affected and sensitive to reduction in data. Therefore, despite the promising 

results of DL models in STLF, they had their challenges and limitations. The major challenge was the 

selection of appropriate architecture, hyperparameters, and training strategies, which significantly 

impacted their performance (Géron, 2019). Furthermore, DL required large amount of training data 

and high computational resources, which might be prohibitive in some applications (Zhang et al., 

2018). Moreover, DL are considered black boxes, making it difficult to interpret the learned 

relationship between the input features and predicted values (Chollet, 2021). 

2.2.    Complex Methodologies in Short-Term Demand Forecasting 

All single-method algorithms have their limitations in achieving high accuracy in ODADF. 

Nevertheless, there are two solutions to overcome them: hybrids and ensembles, where multiple 

single algorithms work together to complement and augment each other. The second section of the 

literature review explored those complex methodologies developed and applied to STLF. 

2.2.1. Hybrid Models 

Hybrid models typically involve combining two or more different techniques to take advantage 

of the strengths of each component while mitigating their weaknesses. Some common hybrid models 

involved combining statistical methods with ML or DL techniques, integrating feature selection and 

dimensionality reduction techniques with DL, as well as combining different DL models. 

For example, Song et al. (2006) used hybrid of Fuzzy LR and ETS to hourly ODADF for South Korea, 

based on year 1996, split 13:1,  yielding MAPE 0.97%, 1.31% and 1.50% for spring, summer and autumn 

weeks, respectively. Study by Dudek (2015) used hybrid of LR and DT to hourly ODADF for Poland, 

based on two years, achieving MAPE 2.53%, better than MLR but worse than ARIMA MAPE 2.81% and 

2.42%, respectively. In following study, Dudek (2016) used hybrid of Similar Day (SD) approach and 

Principal Component Regression (PCR) or Partial Least Squares Regression (PLSR) for hourly ODADF in 

Poland, based on four years, split 3:1, achieving MAPE 1.34% and 1.35%, respectively, outperforming 

all previous models built by Dudek for Poland. For Australia, hybrid models achieved MAPE 2.83% and 

3.00%, respectively, which were worse than MARS and SVR MAPE 1.27% and 1.71%, respectively (Al-

Musaylh et al., 2018). Study by He (2017) used hybrid CNN-LSTM to hourly ODADF for China, based on 
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years 2010-2012, split 10:1, achieving MAPE 1.41%, beating LR and SVR MAPE 2.76% and 1.72%, 

respectively. The result was also better than CNN and LSTM MAPE 3.3% and 2.7%, respectively (Han 

et al., 2019). Another study by Shahare et al. (2023) used hybrid CNN-LSTM to hourly ODADF for 

metropolitan area, based on years 2017-2021, split 3:1, achieving MAE of 0.029, outperforming SES, 

SVR, MLP, LSTM and CNN MAE 0.051-1.400. 

Above studies employed various hybrid approaches to ODADF. Hybrid models leveraged the 

complementary strengths of different forecasting methods, resulting in improved robustness, stability 

and prediction accuracy. However, they faced some challenges and limitations. One of the main 

challenges was selecting and combining the individual forecasting models effectively. Determining the 

optimal combination weights or rules for integrating the forecasts from different models required 

careful experimentation and validation. Tuning their parameters was more complex and both data 

and computationally expensive than their components. Moreover, interpretation and understanding 

of the hybrid model was even more challenging than individual models. 

2.2.2. Ensemble Learning Models 

Ensemble learning models, being a set of base-learners integrated by bagging, boosting, stacking 

or other technique, combine diverse single or complex models’ predictions to create more accurate 

and robust forecast, leveraging the strengths of individual models while compensating for their 

weaknesses. Bagging, which stands for bootstrap aggregating, is a technique that generates multiple 

base models by training them on different subsets of the training data. Boosting iteratively trains base 

models on the same dataset but with different sample weights, encouraging the model to focus on 

harder examples. Stacking combines the outputs of base-learners using a meta-learner. The base-

learners are trained on the original dataset, while the meta-learner is trained on the outputs of the 

base-learners. Furthermore, there are pre-made ensemble learning models available in standard 

modules, such as Random Forrest (RF) and Gradient Boosting Machines (GBM). RF is the simplest 

example of ensemble that constructs multiple DTs during training and combines their predictions to 

improve accuracy and reduce overfitting (Breiman, 2001). GBM is a sequential ensemble learning 

technique that combines the output of multiple weak learners in a weighted manner, to form a strong 

learner (Friedman, 2001),  where the model grows in a stage-wise fashion, and its performance 

improves over iterations (Natekin and Knoll, 2013). 

For example Dudek (2015) used RF to hourly ODADF for Poland, based on two years, split 12:1, 

achieving MAPE 1.84%.  RF performed better than ARIMA, MLR and hybrid of LR-DT MAPE 2.42%, 

2.81% and 2.53%, respectively. However, it performed worse than  hybrid of SD approach and PCR or 
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PLSR MAPE 1.34% and 1.35%, respectively (Dudek, 2016). Study by Fan, Chen and Lee (2009) used 

ensemble of four bagged MLP to hourly ODADF for US, based on years 2005-2007, split 2:1, achieving 

MAPE 2.06%, while best base-learner achieved MAPE 2.71%. Study by Khwaja et al. (2015) used two 

ensembles of MLPs for New England, based on years 2004-2009, split 2:1, achieving MAPE 1.74% and 

1.66% for thirty bagged and twenty-five boosted ensembles, respectively, while the best base-learner 

achieved MAPE 2.74%. Study by Grmanová et al. (2016) used ensemble of eleven stacked models for 

hourly ODADF in Slovakia, based on years 2013-2015, split 5:1, achieving MAPE 1.3%, while the best 

base-learner, HWES achieved MAPE 1.5%. Base-learners included MLP, SVR, MLP and AR models, each 

optimised based on its structure. Foster (2020) used RF and ensemble of 14 models to hourly ODADF 

for Northern Ireland, based on years 2013- 2019, achieving MAPE 2.68% and 2.63%, respectively, while 

the best base-learner, CNN achieved MAPE 3.02%. For New York, based on years 2012-2017, the 

models achieved MAPE 4.51% and 3.20%, respectively, while the best base-learner, MLP achieved 

MAPE 3.75%. All ensembles performed better than MLR, MLP, LSTM and CNN from previous sections. 

Study by Kathirgamanathan et al. (2022) used six ensembles of various models to hourly ODADF for 

New England, based on years 2004-2009, split 4:1. First three models were bagged MLP, CNN and 

LSTM, achieving MAPE of 4.06%, 3.52% and 3.54, respectively. Other three were boosted MLP, CNN 

and LSTM, achieving MAPE of 3.00%, 3.00% and 3.03%, respectively. Bagging and boosting improved 

the consistency and accuracy of base-learners, respectively. However, boosting improved both for 

LSTM. Reduction of training data degraded the prediction and increased its standard deviation for all 

models. Nevertheless, boosting and bagging was able to compensate for reduction of data. Another 

study by Osowski et al. (2022) used six ensembles of various base models and various combining 

functions to hourly ODADF for Poland, based on years 2014-2019, split 7:3. The first four ensembles 

consisted of MLP, RBF and SVR models integrated using Ordinary Averaging, Principal Component 

Analysis (PCA), Independent Component Analysis (ICA), and autoencoder, respectively, achieving 

MAPE 1.83%, 1.81%, 1.73% and 1.61%, respectively. The fifth ensemble was based on Wavelet 

Decomposition and application of SVR and achieved MAPE 1.54%. The sixth ensemble was composed 

of five integrated LSTM predictors and achieved MAPE 1.53%. The results revealed high advantage of 

using variety of individual predictors integrated into ensemble. Additionally, each ensemble 

performed better than any base-learner of which ensemble was composed of. 

Above studies employed various ensemble architectures to ODADF. By combining the strengths 

of different models and reducing the impact of individual model weaknesses, ensembles could 

produce more accurate and robust predictions than their base-learners separately. Moreover, they 

were effective in reducing overfitting, handling noise and outliers, and help to generalise better to 

unseen data. Furthermore, they mitigated the impact of individual model errors or biases, resulting in 
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more consistent and reliable predictions. However, they faced some challenges and limitations. 

Selecting the appropriate base-learners and determining the optimal combination methods was the 

largest challenge. It required careful experimentation, validation, and fine-tuning to achieve the best 

performance. Moreover, combination of multiple models reduced interpretability. Finally, they 

required more computational power and memory compared to individual models, which could limit 

their applicability in resource-constrained or real-time forecasting scenarios. Therefore, future 

research should focus on exploring the potential of ensemble learning (Wu et al., 2021) and 

transformers (Vaswani et al., 2017) in STLF, which have shown promising results in other domains. 

That effort would contribute to the development of more efficient, reliable, and sustainable power 

systems, better equipped to handle the challenges of the future. 

2.3.    Forecasting Competitions and Rankings 

Public competitions, although not strictly considered a research, provide valuable insights into 

the benefits, challenges and limitations associated with different methods used to solve a particular 

problem. Participants from various backgrounds propose their solutions, revealing potential 

advantages and drawbacks of different techniques. While public competitions may not strictly adhere 

to the research methodologies commonly followed in academic studies, the findings and knowledge 

gained from winning solutions can be leveraged to develop new methodologies and refine existing 

models. Time series forecasting competitions can be traced back to 1970’s and have promoted the 

development of forecasting research and applications (Hyndman, 2020). 

In the STLF area, a series of three Global Energy Forecasting Competitions took place in years 

2012, 2014, and 2017 (Hong, Pinson and Fan, 2014; Hong et al., 2016; Hong, Xie and Black, 2019). 

However, their results might have become outdated. Nevertheless, in 2022 (Farrokhabadi et al., 2022) 

published paper with results of the most recent competition, organized by their authors in year 2020-

21. Participants were tasked to perform ODADF in a municipal area in a post-COVID paradigm. Dataset, 

covering a period of four years 2017-2021, had been split arbitrarily and released daily in batches. 

Nearly three-hundred participants were expected to send their forecast within twenty-four hours. 

Finally, nine of them achieved average performance metrics above benchmark model. The first place 

claimed ensemble of seventy-two base models, including AR, LR, Generalised Additive Models (GAM), 

RF, RF for GAM residuals, MLP, and Kalman Filter Adaptation. Base model were combined using Online 

Robust Aggregation of Experts, described in (Obst, De Vilmarest and Goude, 2021). The second place 

took hybrid model, combining Similar Days (SD) approach using day type and peak temperature, with 

adjustment based on peak load forecast recent profiles from days of the same type. The third place 

secured ensemble of 674 models, including decomposed ETS, AR, GAM, and Lasso. Base models were 
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combined by smoothed Bernstein Online Aggregation. The fourth place took ensemble of three other 

ensemble learning models, such as RF, GBM, and XGBoost. They were combined using weighted 

average based on recent performance. The fifth place took Deep Residual Networks model.  

In summary, ensemble learning models took the first, third, and fourth place, hybrid model took 

the second place and Deep Learning model took the fifth place on the podium. Neither MAPE nor 

other common performance metrics were not given in the paper. Instead, a MAE Skill Score was 

calculated based on ratio of MAE for benchmark model and evaluated model, then decreased by one. 

On that scale the models from the first to fifth place got the skill score of approximately 28%, 25%, 

24%, 20% and 19%, respectively. 

2.4.    Exogenous Input Variables 

Historical power system demand is the main critical input variable of all forecasting models. 

There are solutions utilising solely that variable, called univariate AR models, which assume that other 

factors impacting demand change gradually, and become feature which is captured in the data series 

itself (Taylor and McSharry, 2007). However, the vast majority of researchers found that inclusion of 

calendar and weather factors improves the performance of forecasting models. 

2.4.1. Calendar Variables 

The majority of researchers extracted the calendar variable and used it in pair with historical 

demand as input vector to their models. To represent the annual pattern, a common choice was to 

use cyclical encoding, such as sine and cosine waves to optimally represent the seasonality of the time 

series. The same approach was used to represent daily pattern but not the weekly pattern, as the 

variation in load profile was not sufficiently cyclic over a week (Foster, 2020). For example, that 

approach was utilised in MLP in (Bakirtzls et al., 1996; Tsekouras, Kanellos and Mastorakis, 2015). 

Additionally, time of the day was also represented using a different number for each hour as in MLP 

in (Park et al., 1991). To represent days of the week, a common choice was to use One-Hot Encoding. 

For example, that approach was employed in MLP in (Tsekouras, Kanellos and Mastorakis, 2015), and 

in GRU in (Yu et al., 2019). Moreover, holidays were commonly marked to differentiate them from 

working days by binary variable, as in (Jiao et al., 2018; Yu et al., 2019). 

2.4.2. Weather Variables 

Weather variables are the meteorological measurements that describe various aspects of 

atmospheric conditions, such as temperature, relative humidity, wind speed, precipitation, 

atmospheric pressure, solar radiation and cloud cover. Their impact on STLF has been well researched 
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but their selection varied between researchers. Some used only temperature, while others use more 

or even all variables with dimensionality reduction techniques. Additionally, Fidalgo and Matos (2007) 

claimed that weather variables should reflect the characteristics of the specific country. Therefore, 

each forecasting model must be finely tuned to the country in which it is being used. 

Temperature has been the most apparent variable which impacts power demand. Hong and 

Shahidehpour (2015) claimed that temperature alone explains at least 70% of the variation in demand. 

However, customer do not react immediately to a change in temperature (Bolzern, Fronza and 

Brusasca, 1982). Additionally, use of air-conditioning affects the demand in summer (Hong and 

Shahidehpour, 2015). Therefore, researchers using linear models wanted to capture the non-linearity. 

For example, Hinman and Hickey (2009) used squared value of daily temperature average in MLR 

model. Study by Wang, Liu and Hong (2016) addressed the phenomenon of the demand dependency 

on the recent temperature pattern, and described it as recency effect. Using MLR model, Hinman and 

Hickey found that the optimal performance when lagged temperature from the previous twelve hours 

and two daily moving average temperatures for the past two days were included. Another study by 

Pardo, Meneu and Valor (2002) examined introduction of heating (HCD) and cooling degree days (CCD) 

as input to the model to represent very high or very low temperature, above or below which the 

building did not require heating or cooling, respectively (Day, 2006). Many sources used HCD of 15.5oC 

and did not use CCD for UK (Day, 2006; Beggs, 2012). However, Foster (2020) found that complex 

temperature variables were not superior to simple lagged ones for Northern Ireland. 

Relative humidity and wind speed have been the subsequent two most influential variables 

identified in research. They had impact on how people feel the temperature (Steadman, 1984). Xie et 

al. (2018) expanded the algorithm build by Wang, Liu and Hong (2016) by relative humidity variable 

and further increased the model performance. Wind speed had double impact on load variation. 

Higher wind speeds affected the chill index, increasing demand (Taylor and Buizza, 2003) and at the 

same time impacted RES generation, decreasing the demand from system sources (Foster, 2020). 

2.5.    Issues with Comparison of Research Results 

The number of papers on STLF increases every year and hence the number of proposed 

techniques. Unfortunately, most of the approaches could not be replicated or validated and many 

issues have been observed and reported in literature. The first one was related to dataset on which 

models are evaluated. Many studies were based on unique and non-publicly available data (Hong et 

al., 2020). Furthermore, more than half of publications were evaluated on single dataset and most of 

them demonstrate superiority of their proposed approach over others based on above (Scheidt et al., 



16 

 

2020). Moreover, the length of analysed period significantly affected the quality of forecasting (Czapaj, 

Kamiński and Sołtysik, 2022). The length of used time series and their graduation differed substantially 

between studies and ranged from one month to several years and from one minute to one hour, 

respectively (Scheidt et al., 2020). The second problem was related to lack of consensus regarding 

evaluation metrics (Ahmad et al., 2022). They were often inadequate or arbitrarily selected (Hong et 

al., 2020). RMSE and MAE were easy to interpret but made comparison between datasets complicated 

(Scheidt et al., 2020). Additionally, Czapaj, Kamiński and Sołtysik (2022) claimed that the forecasting 

effectiveness described solely by the lowest MAPE was ambiguous. The third problem was related to 

risk of bias. Some well-known datasets might give researchers unfair advantage to their proposed 

method (Hong et al., 2020). Additionally, truncation of the dataset might be used to increase accuracy 

(Czapaj, Kamiński and Sołtysik, 2022). The last problem was avoidance of direct comparison with 

established and state-of-the-art models. Therefore, while there has been no universal one-fits-all 

solution, comparison of research findings was even more complicated due to many factors. 

2.6.    Conclusion 

This literature review provided a comprehensive overview of various approaches to STLF abroad, 

focusing on single and complex methodologies, exogenous variables influencing demand and issues 

with comparison of research results. It served as a robust foundation for the research objectives, 

which include the development and evaluation of ensemble learning models, as well as revealing their 

potential in ODADF in Ireland. While ensemble learning has not yet been studied in the context of 

Ireland's power system demand forecasting, this approach holds significant promise and could address 

the current knowledge gap in this area. 

The diverse range of reviewed sources, employing variety of methodologies from traditional ones 

to current advancements, offered a rich, multifaceted perspectives on the field, which provided vital 

information that directly informed the first research objective. The strengths and weaknesses of 

various methodologies, under specific conditions reported in research, was invaluable in guiding the 

selection of the base-learners and integration methods to develop the ensemble learning framework 

for this research. The significance of incorporating historical power demand data, calendar variables, 

and weather variables in forecasting models and various strategies employed by researchers in the 

field for incorporating these variables, informed the implementation of the framework. 

As for the second research objective, the literature review underscored the importance of 

evaluating the performance of ensemble learning models by comparing their metrics based on a 
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consistent and effective approach. Insights gleaned from real-world applications informed the 

experimental design for this research. 

As for the third research objective, the literature review shed light on the challenges and 

limitations in the field, such as issues with lack of comparisons with established models. These insights 

were instrumental in the exploration of ensemble learning models’ potential to ODADF in Ireland. 

Finally, this literature review had not only deepened the understanding of the field, but also 

significantly shaped the direction of the research objectives. The rich information and critical 

evaluations gleaned from the sources illuminated the methodologies, variables, and practical 

considerations that required focus. The review thus provided an invaluable basis for the design and 

development of an optimal ensemble learning configurations to ODADF and significantly informed 

future research and development recommendations.  
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3. Research Methodology 

3.1.    Concise Methodology Framework  

The primary research methodology of this research was experimentation. The aim was to 

determine the cause-and-effect relationship between ensemble learning configurations and power 

demand forecasting performance metrics, in order to find the best architectures for One Day-Ahead 

Demand Forecasting (ODADF) in Ireland. The methodology framework was divided into three major 

phases, such as data preparation, experimentation with ensemble learning architectures, including 

base-learners and integration methods, and validation of results (Figure 3.1). Figure 3.2 depicted 

structured overview of the research methodology as high-level pseudocode. 

 

Figure 3.1. Schematic of the research methodology framework. 
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// Preparation Phase 
 LOAD dataset of power demand time series for years 2014:2022 

SELECT 22 automatic weather stations 
FOR weather station IN automatic weather stations: 
 LOAD weather dataset for weather station time series 

SELECT [name] FROM weather dataset AS station name 
SELECT [temperature, humidity, wind speed] FROM weather dataset WHERE 2014 ≤ year ≤ 2022 AS selection 
APPEND [station name, selection] TO weather features 

 SAVE dataset of weather features to CSV file 
// Cleaning and Processing the Data Phase 
 CLEAN power demand time series 

RESAMPLE power demand time series 
SCALE power demand time series 
EXTRACT temporal features from power demand time series timestamps 
CONVERT temporal features of power demand to cyclical and vector formats 
LOAD dataset of weather features 
FOR weather factor IN [temperature, relative humidity, wind speed]: 
 FOR approach IN [linear regression, lasso regression]: 

 CREATE representative virtual weather station 
SELECT representative real weather station 

FOR approach IN [similar day, moving window]: 
 DEFINE supervised learning problem 

IF approach IS similar day: 
 SELECT temporal features, weather station, weather factors and lagged power demand 
ELSE: // moving window 
 SELECT temporal features, weather station, weather factors, and window size 
CREATE supervised learning problem dataset 

SPLIT supervised learning problem datasets into training datasets 2014:2019 and testing datasets 2021:2022 
SELECT power demand FROM training datasets WHERE 2014 ≤ year ≤ 2019 
SELECT baseline models 
FOR baseline model IN baseline models: 
 MAKE baseline models predictions for year 2019 

EVALUATE baseline models ON year 2019 
// Experimentation Phase - Base-learners of Ensembles 
 SPLIT training datasets into training subsets 2014:2018 and validation subsets 2019 

SELECT potential base-learners along with associated hyperparameters and their ranges 
FOR base-leaner IN potential base-learners: 
 TUNE hyperparameters of potential base-learner 2014:2018 using Bayesian optimization with 10-Fold CV 

TRAIN potential base-learners on training subsets 
MAKE base-learners predictions for years 2015:2019 
EVALUATE potential base-learner ON validation subsets 

SELECT 20 top-performing potential base-learners as base-learners 
// Experimentation Phase - Meta-Learners of Ensembles 
 SELECT potential meta-learners of ensembles along with associated hyperparameters and their ranges 

FOR meta-learner IN [heuristic rules, classifier and regressor]: 
 IF meta-learner <> heuristic rules: 

 TUNE hyperparameters of meta-learners 2015:2018 using Bayesian optimization with 10-Fold CV 
TRAIN potential meta-learners using 20 base-learners predictions for years 2015:2018 

MAKE ensemble predictions for years 2015:2019 
EVALUATE potential meta-learners ON validation subsets 

SELECT classification meta-learner of ensembles for validation phase 
// Validation Phase 
 SPLIT testing datasets into training subset 2021 and validation subset 2022 

FOR base-learner IN base-learners: 
 REFIT base-learners on training subset 2021 

MAKE base-learners predictions for years 2021:2022 
EVALUATE base-learners on unseen validation subset 2022 

REFIT classification meta-learner of ensembles using 20 base-learners predictions for year 2021 
MAKE classification-based ensembles predictions for year 2022 
EVALUATE classification-based ensembles ON validation subset 2022 

Figure 3.2. High-level pseudocode as structured overview of research methodology. 
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The first part of the preparation phase identified two populations, in the context of utilising 

secondary datasets into primary research. The first one was the whole dataset containing total power 

demand measurements from Ireland, available from EirGrid (2023). The second one consisted of 

weather factors measurements from weather stations in Ireland, available from MetÉireann (2023). 

Non-probability sampling and judgment sampling were used as sampling method and type, 

respectively. Quantitative research approach was used, which involved pre-processing, integration of 

data, and conducting Exploratory Data Analysis (EDA). Time series of power demand, collected from 

national system operator, was cleaned, resampled, scaled, and enriched by extraction of temporal 

features, and subsequently converted to cyclical and vector formats.  Time series of weather factors, 

collected from twenty-two weather stations of the national meteorological service, were trimmed to 

cover temperature, relative humidity, and wind speed for years 2014-2022, and then cleaned. Unlike 

demand, where the data was given for the entire country, weather data was distributed locally. Given 

that inclusion of twenty-two weather stations into research was not feasible, three approaches to find 

representative stations were proposed, such as two virtual weather stations created by Linear and 

Lasso Regressions, and the most important real one. 

In the second part of preparation phase, baseline models were examined, and supervised 

learning problems were defined, for Similar Day (SD) and Moving Window (MW) approaches. As one-

day ahead forecasting is in practice performed at least several hours in advance, current-day partially 

available data had to be removed from consideration, to avoid double forecasting phenomenon. 

Investigation into feature importance was performed to select the best ones, considering all three 

representative weather stations, utilising methods such as Forward and Backward Selection 

(Elimination) Regression, Lasso Elimination Regression, Random Forest and Permutation Feature 

Importance, separately for SD and MW approaches. Subsequently, supervised learning problem 

datasets were created for both approaches. Finally, datasets were split into training and testing 

datasets, covering years 2014-2019, and 2021-2022, respectively. 

The first part of the experimentation phase identified the population of interest, in the context 

of the primary research, as the entire set of possible ensembles configurations, including all 

combinations of selected base-learners and techniques of integration, with their respective 

hyperparameters. Non-probability sampling and judgment sampling were used as sampling method 

and type, respectively. The base-learners belonged to supervised machine and deep learning 

algorithms designed to solve regression problems, possibly able to incorporate exogenous factors, 

such as calendar and weather features. Ensemble learning models were compilation of base-learners 

with their hyperparameters integrated by three stacking techniques, such as heuristic rule, 

classification, and regression-based methods.  
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In the second part of experimentation, training datasets were further split into training and 

validation subsets, covering years 2014-2018, and 2019, respectively. Then, Bayesian optimisation was 

used for hyperparameters tuning of potential base-learners, using 10-fold cross-validation, and 

predictions were made for years 2015-2019. Potential base-learners were evaluated on year 2019, 

and twenty of the most promising ones were selected as base-learners. Finally, predictions of base-

learners became the training dataset for meta-learners of the ensembles. Heuristic rule-based 

ensembles were used as the baseline models. Bayesian optimisation was used for hyperparameters 

tuning of classification-based and regression-based meta-learners, using 10-fold cross-validation, and 

predictions were made for years 2015-2019. Potential meta-learners were evaluated on data from 

year 2019, and classification-based ensembles were selected for further investigation. 

In validation phase, testing datasets were further split into training and validation subsets, 

covering years 2021 and 2022, respectively. Then, the twenty base-learners, with hyperparameters 

inferred from the second stage, were refitted and evaluated on unseen data from 2021 and 2022, 

respectively. Subsequently, predictions of base-learners became the training dataset for meta-

learners of the ensembles. Finally, the potential of classification-based ensembles was validated on 

data from year 2022. 

3.2.    Project Management Framework 

CRISP-DM, a proven and widely acceptable methodology in data science projects (Vorhies, 2016), 

ensures that business objectives remain at the centre of the project (Saltz, Shamshurin and Crowston, 

2017). It is free, neutral in regards of application, industry and tools used, and approaches the life 

cycle of the project from both, an application-focused and technical perspectives (Negro, 2021). 

Therefore, CRISP-DM, adapted to the requirement of this research, was selected as project 

management framework for this research (Figure 3.3). 

3.3.    Business Understanding 

The background, research objectives, and literature review covered in Chapters 1 and 2, 

respectively, formed the business understanding phase. Accurate ODADF was found crucial for 

electrical network reliability, the environment, and trading markets. Problem with achieving accurate 

predictions by individual and hybrid models in the dynamic conditions of the power system operation, 

had been identified. Finally, ensemble learning approach was identified as possible solution to 

overcome the limitations of those methods. 
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Figure 3.3. CRISP-DM Project Management Framework. Adapted from Chapman et al. (2000) 

3.4.    Data Understanding 

Time series of power demand in Ireland was collected from the national system operator EirGrid 

(2023), through their Application Programming Interface (API). It covered fifteen-minutes average 

power demand in Ireland, for the available period from 18/07/2013 to 10/06/2023. Full years 2014-

2022 were used in order to allow proper pattern recognition. Time series of Irish weather factors were 

collected from repository of national meteorological service MetEireann (2023). Unlike demand, 

where the data was given for the entire country, weather data was distributed locally. From all 

observing weather stations in Ireland, twenty-two automatic ones, recording data for temperature, 

wind speed and relative humidity every minute, subsequently hourly aggregated and validated by 

meteorologists, were selected. Given that the original dataset covered more variables for much longer 

period than needed, datasets were trimmed to cover years 2014-2022 and three selected weather 

factors only, to accelerate their further processing. Additionally, coordinates of weather stations were 

extracted from datasets, and presented on the map of Ireland, using Folium module and information 

contained in JSON dataset, collected from Free Software Foundation (FSF, 2023). Initial EDA was 

performed to detect distortions, missing timestamps, missing data and outliers in time series. 
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3.5.    Univariate Data Preparation 

The univariate data was enriched by extraction of day of the week, holidays observed on 

weekdays, day of the year and hour from timestamps. Detected distortions, missing data and outliers 

were dealt with, using data analytics methods. Firstly, time series affected by Daylight-Saving Time 

(DST) distortion were shifted back by one hour to revert their continuity, and the one-hour gaps were 

filled using second-degree Polynomial Regression interpolation. The new data was validated using 

Coefficient of Determination R2 and RMSE metrics, as well as visual comparison to SDs from up to five 

neighbouring weeks before the affected day. 

Single and continuous missing values were filled using Linear Regression (LR) interpolation of the 

neighbouring timestamps, and SDs from neighbouring weeks, respectively. Flat parts of time series, 

with the same value repeating more than six times (1.5 hour) and spikes, with rapid value change by 

more than 300MW, were treated as outliers, and replaced using LR interpolation of SDs from 

neighbouring weeks. Validation of the cleaning process was performed by comparing the distributions 

of power demand before and after the process. 

EDA was performed on cleaned dataset, including descriptive statistics, and visualisation of raw 

and normalised time series, to find patterns in time series, as well as similarities and differences 

between days of the week. Time series was then resampled to one-hour interval by averaging the 

values, for consistency with current research. Inferential statistic was performed on cleaned dataset, 

including Shapiro-Wilk normality tests, Mann-Kendall trend tests, Augmented Dickey-Fuller (ADF) and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity tests, auto-correlation (ACF) and partial auto-

correlation (PACF) tests, on original and first-order differenced time series. Additionally, Multiple 

Seasonal Patterns Decomposition (MSTL), as proposed by Bandura, Hyndman and Bergmeir (2021), 

was performed on of hourly time series to inform further research. Subsequently, supervised learning 

problems were defined for SD and MW approaches, utilising historical weekly lags and continuous 

historical demand values, respectively. 

For SD approach, an investigation into weekly lagged power demand was performed to find how 

an individual or range of individual values could be utilised for ODADF. Then, LR was considered for 

adjusted predictions for one week, one year (52 weeks), and a range 1-52 weeks ago. Similarly, 

investigation into daily lagged demand was performed. Subsequently, research into MW size was 

conducted for MW approach. 

Power demand values were scaled by dividing by the global maximum value, effectively placing 

them in a range between 0 and 1. This approach, while similar to the MinMax scaler, avoided values 
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near or equal to zero. Such scaling was found beneficial for modelling and evaluating models, 

particularly for the MAPE metric calculation. The day of the week, represented as categorical values 

from Monday to Sunday, was converted into a numerical vector using a One-Hot Encoder. In this 

encoding, a particular column was set to 1, while the others were filled with zeros. Observed holidays, 

being categorical values Yes or No, were converted to numerical values 1 or 0, respectively. Day of the 

year and hour of the day, being numerical values 1-365 (366 in leap year) and 0-23, respectively, were 

converted to a cyclical format using sine and cosine functions. The conversion approach was then 

validated by correlation study. 

3.6.    Multivariate Data Preparation 

Time series of weather factors, affected by DST, were shifted back by one hour to restore their 

original continuity, and the one-hour gaps were filled using their monthly mean values. Wind speed, 

given in knots, nautical-miles-per-hour, was converted to kilometres-per-hour, by multiplication by 

1.852. Then, correlation study between actual power demand and lagged weather factors was 

performed. For each weather factor, three approaches for representative weather station were 

proposed, such as two virtual weather stations created by Linear and Lasso Regression, and the most 

important real weather station, revealed by Lasso Regression. Results were validated by correlation 

study between actual demand and lagged weather factors for each solution, and by comparing 

individual distributions and correlation plots. Finally, weather factors were scaled using the MinMax 

scaler, effectively converting their values to a range from 0 to 1. 

The final supervised learning problem datasets were created for SD and MW approaches. For the 

SD approach, weekly lags with a correlation above 90% were considered. An investigation into feature 

importance was carried out to select the best features. Several methods were utilized: 

• Forward Selection Regression: the variable that, upon addition, provided the most significant 
improvement to the fit was permanently added to the selection, 

• Backward Selection (Elimination) Regression: the variable whose removal resulted in the least 
increase in error was permanently eliminated from the selection, 

• Lasso Features Selection (Elimination) Regression: variables were removed from the selection by 
increasing the value of hyperparameter alpha, 

• Random Forest Feature Importance. This method leveraged the inherent structure of random 
forests by assessing how frequently a feature was used to split the data and its impact on reducing 
impurity. Important features were those that frequently improved the purity of the node. 

• Permutation Feature Importance. This method evaluated feature importance by measuring the 
decrease in model accuracy when the feature's values were randomly shuffled. A significant drop 
in performance indicated that the feature was important. 
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For MW approach, an investigation into feature importance was performed to select the best ones 

for the univariate size of the MW. Then, investigation into MW size and selected features was 

performed recurrently to select features and size which achieved the lowest MAPE. 

The whole dataset covered period from year 2014 to 2022. However, it was observed that from 

27/03/2020 to 26/07/2020, during various phases of Covid-19 lockdown in Ireland, the pattern of 

power demand was seriously disrupted by regulations at national level. As the research did not 

concentrate on examining that period specifically, but rather focused on forecasting of power demand 

under normal conditions, an approach was proposed to train all models on data in years 2014-2018 

and validate the results on year 2019. Then, all models with hyperparameters tuned on data in years 

2014-2018 were refitted and tested on years 2021 and 2022, respectively. That way, data from year 

2020 was not considered in models training and evaluation, and the disrupted period did not influence 

the results of this research. That approach aligned with the optimal splitting considerations by Roshan 

(2022). Finally, given that different models had unique data shape requirements, the final datasets 

were tailored accordingly. 

Several performance metrics were reported in this research, including: 

• Mean Square Error (MSE): calculated as the quadratic mean of the differences between predicted 
and observed values. It served as the function that optimizers aimed to minimize, 

• Root Mean Square Error (RMSE): derived from the square root of the MSE, 

• Mean Average Error (MAE): determined by dividing the sum of absolute errors by the sample size, 

• Mean Average Percentage Error (MAPE): the mean difference between predicted and observed 
values relative to the observed values. Furthermore, MAPE was broken down by day of the week 
(including observed holidays), month, and hour to facilitate a detailed evaluation. 

While Grid-search and Random-search are well-known techniques for hyperparameters tuning, 

they face significant limitations. Grid-search is computationally intensive due to exhaustive 

combinations and is highly sensitive to the range and count of pre-selected hyperparameters. On the 

other hand, Random-search, while efficient, might overlook optimal values due to its random selection 

process. In contrast, Bayesian optimisation offered a more efficient and data-driven approach. It 

worked efficiently with both discrete and continuous variables, beginning with random 

hyperparameters sampling and then finding the best hyperparameters using a Gaussian process, 

iterating until the maximum number of trials was achieved. Significantly, Bayesian optimisation 

seamlessly integrated model's internal hyperparameters with external ones, such as name of weather 

station, for example. Therefore, for this project, Bayesian optimisation was selected for 

hyperparameters tuning, using hyperopt module. To mitigate the risk of overfitting and to ensure a 

reliable hyperparameter performance estimate, 10-fold cross-validation was employed. This approach 
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aided in evaluating both the model's bias and variance, providing insights into its generalization 

capabilities on unseen data (Burkov, 2019). 

Finally, the simplest baseline models were considered, such as naïve last year value, historical 

years mean, and last year mean, which repeated a single value for the whole next year. Then, similar 

day - one week, and one year (52 weeks) ago - were examined. Finally, the state-of-the-art univariate 

time series models, such as TBATS (De Livera, Hyndman and Snyder, 2011), NBEATS (Oreshkin et al, 

2020), and NHITS (Challu et al, 2023) were taken into consideration. However, the last one was not 

employed in this research due to lack of available documentation. 

3.7.    Modelling and Evaluation of Base-Learners 

According to research in ensemble learning models (Sollich and Krogh, 1996; Kuncheva and 

Whitaker, 2003), they tend to yield better results when there is a significant diversity among the base-

learners. Therefore, successful implementations promote diversity among the models they combine 

(Adeva, Beresi and Calvo, 2005; Brown et al, 2005). Based on that, and the information gathered 

through literature review, ML models, such as LR, Ridge, Lasso, SVM, GBM and MLP Regressors were 

considered as potential base-learners, using SD and MW approaches. Additionally, DL models, such as 

CNN and LSTM were examined as base-learners using SD approach. However, it was not feasible to 

include them, based on MW approach, within the timeframe of the research. Hyperparameters tuning 

was performed, for all base-learners and their selected hyperparameters, using data from years 2014-

2018 and validated, using 10-fold cross-validation, on data from year 2019. Kolmogorov-Smirnov tests 

were performed to compare predictions’ and actual demand’s distributions. 

3.8.   Experimentation with Ensemble Learning Models 

Various architectures of ensembles, that incorporated twenty base-learners, were examined. 

Integration by stacking was represented by heuristic rule-based ensembles, as well as by classification, 

and regression-based meta-learners of ensembles. Their performance as a function of the day of the 

week, month and hour were examined, followed by Kolmogorov-Smirnov tests and the percentage 

share of base-learners in the best predictions by year and the day type. 

Firstly, heuristic rule-based ensembles were considered, including mean, median, and base-

learners with lowest MAPE one day, one week, and one year (52 weeks) ago. Secondly, classification-

based ensembles - on explanatory variables only - were examined. Classifiers, such as Logistic 

Regression, SVM, GBM and MLP, were assessed as meta-learners. The product of probabilities, of 

base-learners being the best predictors for particular hour, day type, day of the year, weather factors, 
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and their predictions, were taken as ensemble predictions.  Finally, regression-based ensembles, 

based on limited and unlimited number of base-learners’ predictions, were considered. Regressors 

such as LR, SVM, GBM and MLP were examined as regression meta-learners, their predictions were 

evaluated on data from year 2019, and tested with Kolmogorov-Smirnov tests. Then, ensemble 

learning models’ performance as a function of the day of the week, month, and hour, were performed. 

3.9.   Deployment 

Classification-based ensembles, as the top performers, were refitted and tested on unseen data. 

Firstly, the twenty base-learners, with hyperparameters inferred from previous phase of 

experimentation, were refitted and evaluated on unseen data from years 2021-2022, respectively. 

Subsequently, classification-based meta-learners, with hyperparameters inferred from previous 

phase of experimentation, were refitted and evaluated on the base-learners’ predictions, and data 

from year 2022, respectively. Then, base-learners’ and classification-based ensembles’ performance 

as a function of the day of the week, month and hour were performed, followed by the percentage 

share of base-learners in best predictions by year and day type study. Finally, the results and 

limitations of the research were discussed, and recommendations for further investigation were 

provided. 

3.10   Tools and Technologies 

All computations in this project were performed on Lenovo Legion 5 Pro with AMD-Ryzen7-5800H 

processor, 64GB RAM, running Windows 10. Python and its libraries implemented in Jupyter Notebook 

were used for this project. Version control system Git helped to track and manage changes to files on 

local computer, while repository hosting GitHub helped to secure them in the cloud. 

3.11.   Limitations and Ethical Considerations 

This section addressed the ethical considerations inherent in the Data Analytics Project as 

foundation for responsible research conduct, ensuring the protection and well-being of individuals 

and organisations, both involved in the research and affected by its results, following principles for 

dissertations (Resnik, 2005, 2018; Shamoo and Resnik, 2009; Bryman and Bell, 2015; Saunders, Lewis 

and Thornhill, 2015; Adams and McGuire, 2022). 

The whole research was performed on personal computer with original operating system, word 

processing software, open-source distribution of Python programming language and its relevant 

scientific packages and libraries. Secondary datasets for power demand and weather factors are 
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publicly available, with Open Data and Creative Commons Licenses, respectively, subject their 

acknowledgment, while retaining ownership of the data. 

In regards to the primary research, bias was inherent in non-probability, judgment sampling. 

Moreover, due to time constraints of the research, a balance between performance and 

computational complexity of the configuration was considered. To reduce bias and ensure that chosen 

sample was truly representative for the entire population, a wide range of models, with different 

characteristics was selected. To ensure identical experimental environment, each ensemble was 

trained and validated on the same training datasets. The results from sample of units inferred to the 

performance of all ensembles in population. Therefore, the best performing model from the sample 

was as close as possible to, and most likely, the best performing model in the whole population of 

interest. 

To build an ensemble, suitable individual predictors and ensemble techniques were pre-selected. 

As the project was conducted within twelve-weeks period, a limitation in architecture of the ensemble 

was recognised and accepted, with aim to develop a balanced ensemble model, where potential 

benefits in accuracy were weighed against computational effort and complex model building. 

Therefore, DL models were not incorporated for MW approach, and Bayesian optimisation of 

hyperparameters tuning was restricted to twenty trials. Besides, hybrid models were not considered 

for base-learners. Moreover, early-stopping was not integrated into the MLP, LSTM, and CNN models 

because it was found to be incompatible with Bayesian optimisation, causing early stopped trials to 

fail. Instead, the number of epochs was set as a hyperparameter to be optimised. Furthermore, while 

three classes of stacking integration methods were examined in this research, neither bagging or 

boosting ensembles were explored due to time-constraints of this research.  
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4. Data Understanding 

4.1.    Data Collection 

Time series of power demand in Ireland was collected from the national system operator EirGrid 

(2023), Smart Grid Dashboard, through their Application Programming Interface (API) (Figure 4.1). 

Time series of Irish weather factors were collected, as CSV files, from website repository of national 

meteorological service MetEireann (2023). Unlike demand, where the data was given for the entire 

country, weather data was distributed locally. From all observing weather stations in Ireland, twenty-

two automatic ones, recording temperature, wind speed and relative humidity every minute, then 

hourly aggregated and validated by meteorologists, were selected. 

 

Figure 4.1. Schematic of data collection for univariate time series of power demand in Ireland. 

4.2.    Initial Data Extraction and Exploration 

4.2.1. Time Series of Power Demand in Ireland 

Time series of fifteen-minutes average power demand for the whole Republic of Ireland 

covered the period from 18/07/2013 to 10/06/2023. Full years from 2014 to 2022 were used in order 

to allow proper pattern recognition. The data was enriched by extraction of temporal features, such 

as day of the week, holiday observed on weekdays, day of the year and hour, from timestamps, using 

calendar and holidays modules (Figure 4.2). 

 

Figure 4.2. Schematic of data collection for univariate time series. 
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4.2.2. Time Series of Weather Factors in Ireland 

Time series of weather factors in Ireland covered one-hour average of various factors for many 

decades. Temperature, relative humidity and wind speed were found the most important in recent 

research. Therefore, to accelerate further data reading and processing, time series were trimmed to 

cover years from 2014 to 2022 and above weather factors only (Figure 4.3). Additionally, names and 

coordinates of weather stations, were extracted from those datasets, and presented on the map of 

Ireland (Figure 4.4), using Folium module and geographical information contained in JSON dataset, 

collected from Free Software Foundation (FSF, 2023). 

 

Figure 4.3. Schematic of data collection for weather factors time series in Ireland. 

 

 

Figure 4.4. Location of 22 automatic observing weather stations in Ireland. Generated with Folium module and 
geographical information contained in JSON dataset collected from Free Software Foundation (FSF, 2023). 
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4.2.3. Distortions, Missing Values and Outliers Detection in Power Demand Time Series 

While time series had no missing timestamps, ten days with missing values of 147 among 346,852 

all values (less than 0.04%), were detected. Additionally, Daylight Saving Time (DST) introduced 

artificial distortion by setting the clock by one hour forward and back in the spring and autumn, 

respectively. That shifted time series by one-hour between time-change days, and created one-hour 

gap and overlap every year, on the time-change day, in autumn and spring, respectively. That changed 

the pattern in time series (Figure 4.5), and needs to be addressed. Dates of time-changes were 

established using pytz module. 

 

Figure 4.5. Daylight Saving Time (DST) distortion creates one-hour gap and one-hour overlap every year, on the time-
change day in autumn and spring, respectively (see years 2013-2023 on the top row) what changes pattern in the 

time series (see year 2022, similar days up to 5 weeks after/before the time-change day on the bottom row). 

Within the ten days with missing values, five days missed single value and five days missed 

continuous values. Furthermore, twenty-one days with outliers were detected.  Flat parts of time 

series, where the same value repeating more than six times (1.5 hour) occurred in twelve days (Figure 

4.6). Spikes in time series, where the value changed rapidly, by more than 300MW in a single step, 

occurred in nine days (Figure 4.7). They were treated as outliers, and need to be replaced. 
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Outliers detected in Univariate Time Series - Flat Parts in Time Series 

 

Figure 4.6. Outliers detected in twelve days as flat parts of time series, where the same value repeats more than six times. 

 
Outliers detected in Univariate Time Series - Spikes in Time Series 

 

Figure 4.7. Outliers detected in nine days as spikes, where the value changed rapidly, by more than 300MW per single step. 

4.2.4. Daylight-Saving Time Distortion in Weather Factors Time Series in Ireland 

DST distortion in weather factors time series was found, and needs to be addressed. 

4.3.    Conclusion 

In this chapter, sources and selection of datasets were identified, and raw data was collected for 

the fifteen-minutes averages of power demand, and one-hour averages of weather factors from 

twenty-two weather stations in Ireland.  Extraction of variables, such as day of the week, holidays 

observed on weekdays, day of the year and hour, enriched the data by temporal features. Three most 

important weather factors, such as temperature, relative humidity and wind speed were selected. 

Initial EDA detected missing values and outliers in time series, including ten days with missing values 

and twenty-one days with outliers. Moreover, DST distortion was identified in both, power demand 

and weather factors time series. They need to be addressed to allow proper pattern recognition. 

Finally, data was trimmed to cover full years 2014-2022. 
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5. Data Preparation: Time Series of Power Demand in Ireland 

5.1.    Data Cleaning 

5.1.1. Daylight-Saving Time Distortions Removal 

Time series, affected by DST, was shifted back by one hour to restore their original continuity, 

moving the one-hour gap from spring to autumn (Figure 5.1). 

 
Figure 5.1. DST distortion removal restores original continuity (see years 2013-2023 on the top) and moves the one-hour 

gap from spring to autumn (see year 2022, days up to 5 weeks after/before the time-change day on the bottom). 
 

 

Figure 5.2. The one-hour gap connected with DST removal was filled using Polynomial Regression of second-degree 
interpolation. Metrics, such as Coefficient of Determination R2 and RMSE validated the result. 
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The one-hour gap was then filled using second-degree Polynomial Regression interpolation. New 

data was validated by R2 and RMSE metrics (Figure 5.2), as well as visual comparison to Similar Days 

(SD) up to five weeks before that day (Figure 5.3). 

 
Figure 5.3. Daylight Saving Time (DST) distortion removal and one-hour gap filling using Polynomial Regression of second-

degree interpolation restores their original continuity (see years 2013-2023 on the top row and year 2022, similar 
days up to 5 weeks after/before the time-change day on the bottom row). 

5.1.2. Dealing with Missing Data 

Single and continuous missing values were filled using Linear Regression (LR) interpolation of 

neighbouring timestamps (Figure 5.4), and SDs of neighbouring weeks (Figure 5.5), respectively. 

 

Figure 5.4. Filling single missing values for five days using Linear Regression interpolation. 
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Figure 5.5. Filling continuous missing values for five days using Linear Regression interpolation of similar days. 

5.1.3.    Dealing with Outliers 

Outliers in time series, being flat parts and spikes, detected in previous chapter, were replaced 

using LR interpolation of SDs from neighbouring weeks (Figures 5.6-5.7). 

Power Demand in ROI, Replacing Outliers: Flat Parts of Time Series 

 

Figure 5.6. Outliers: flat parts replaced using Linear Regression interpolation of similar days one week before and after. 

 
 

Power Demand in ROI, Replacing Outliers: Spikes in of Time Series 

 

Figure 5.7. Outliers: spikes replaced using Linear Regression interpolation of similar days one week before and after. 
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5.1.4. Summary and Validation of the Cleaning Process 

The count of replaced values in the dataset was shown on Figure 5.8. Validation of the cleaning 

process was performed by comparison of the power demand time series distributions before and after 

the process (Figure 5.9). Finally, summary of the cleaning process was given in Table 5.1. 

 
Figure 5.8. The percentage of filled values in the dataset. 

 

 
Figure 5.9. Comparison of distributions of Univariate Time Series of Power Demand in Ireland distribution before and after 

the cleaning process of DST removal, filling NaN’s and replacing outliers. 
 

Univariate Data Cleaning Process No of days 
affected 

Verification of solution 

Problem type Solution Primary Final 

DST distortion Shifting 
10 

Visual 

Comparison 
of data 

distributions 
before and after 

the cleaning 
process 

DST missing data 
Second-degree Polynomial 
Regression interpolation 

R2, RMSE, visual 

Single missing 
data 

Linear Regression of 
neighbouring values 

5 

Visual: similar days up to 
5 weeks before and/or 

after the day 

Continuous 
missing data 

Linear Regression of similar days 
1-week before and after the day 

5 

Outliers: 
repeated data 

12 

Outliers: spikes 9 

Table 5.1. Summary of the data cleaning process of Univariate Time Series of Power Demand in Ireland. 

5.2.    Exploratory Data Analysis: Power Demand Time Series 

Descriptive statistics, including annual mean, standard deviation, minimum, median, and 

maximum values, for years 2014-2022 was given in Table 5.2. Year 2020, affected by Covid-19 

lockdown, was marked in grey. Distribution of observed holidays in Ireland by day of week for period 

from July 2013 to June 2023 was given in Table 5.3. The majority of observed holidays in Republic of 

Ireland occurred on Mondays. 
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Year 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Mean 2492 3034 3092 3167 3299 3319 3338 3529 3606 

ϭ 599 591 593 597 604 606 638 611 607 

Min 1664 1759 1882 1929 2037 2052 2004 2269 2429 

Median 3012 3102 3157 3237 3365 3390 3348 3591 3650 

Max 4613 4704 4768 4939 4916 5015 5357 5363 5527 

Table 5.2. Descriptive statistics of power demand in Ireland for years 2014-2022 

Day of Week Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

# Holidays 61 6 6 6 8 0 0 

# Total 516 516 516 516 517 516 516 

% Holidays 11.8 1.2 1.2 1.2 1.5 0 0 

Table 5.3. Distribution of observed holidays in Ireland by day of week for period from July 2013 to June 2023. 

It was observed that from 27/03/2020 to 26/07/2020, during various phases of Covid-19 

lockdown in Ireland, the pattern of power demand was significantly disrupted as consequence of 

regulations introduced at national level (Figure 5.10). 

 

Figure 5.10. Visualisation of univariate time series: annual, monthly and weekly mean of power demand, and daily range of 
power demand in Ireland. Covid-19 lockdown period marked as dashed red vertical lines. 
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The annual boxplot of power demand in Ireland from 2013 to 2023 showed the median value 

increasing every year, while the interquartile range remaining similar. The monthly boxplot suggested 

annual seasonality, with lowest and highest values in summer and winter, respectively (Figure 5.11). 

 
Figure 5.11. Annual (on the left) and monthly (on the right) boxplot of power demand in Ireland. Covid-19 lockdown period 

marked as dashed red lines. 
 

Furthermore, the monthly boxplot for full years 2014-2022 (Figure 5.12) and daily mean of power 

demand (Figure 5.13) confirmed that year 2020 might be indeed considered as an outlier. 

 

 
Figure 5.12. Monthly boxplots of power demand in Ireland by years. Covid-19 lockdown period marked as dashed red lines. 

 

 

Figure 5.13. Daily mean of power demand in Ireland, with colour-marked seasons. Covid-19 lockdown period marked as 
dashed red vertical lines. 
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To find similarities and differences between days of the week, power demand was normalised by 

its daily mean values and visualised as average normalised demand for years 2014-2021 and 2022 

(Figure 5.14). It was noticed that days of the week and holiday on weekday could be grouped. Tuesdays 

shared similar pattern with Wednesdays and Thursdays, and Sunday shared similar pattern with 

holidays on weekdays (Figure 5.15). 

 

 

 

Figure 5.14. Average normalised demand in Ireland, for various day types from 2014 to 2021 (top) and 2022 (bottom). 

 
Figure 5.15. Average normalised power demand in Ireland, for grouped day types from 2013 to 2023. 

To investigate the pattern further, full normalised dataset was plotted for each of the groups 

individually, with colour-marked seasons. The Tuesdays-Wednesdays-Thursdays group was plotted as 

grey silhouette for other groups. The evening peak was the highest on Mondays in winter, and the 

lowest on Sundays and holidays on weekdays in summer. The night minimum was the lowest on 

Mondays in winter, and the highest on Saturdays, Sundays and holidays on weekdays. Furthermore, 

morning demand rose later in winter than in summer, and was shifted forward for Saturdays, Sundays 

and holidays on weekdays (Figure 5.16). 
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Figure 5.16. Normalised power demand in Ireland, for grouped day types from 2013 to 2023, with marked seasons. 

The boxplot of normalised dataset for each fifteen-minute period and all groups individually 

(Figure 5.17), confirmed observations from previous paragraph. Moreover, it clearly depicted higher 

values of interquartile range of normalised demand in the mornings and evenings. 
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Figure 5.17. Boxplot of normalised power demand in Ireland, for grouped day types from 2013 to 2023, with Tuesday-
Wednesday-Friday group shadowed in other graphs. 

Density histograms of power demand and its daily mean were similar for working days but shifted 

towards lower values for Saturdays, Sundays and holidays on weekdays. Moreover, normalised power 

demand showed narrower range on those days in comparison to working weekdays (Figure 5.18). 
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Figure 5.18. Density histograms of original and first-order differenced power demand, daily mean, and normalised power 
demand in Ireland, for grouped day types, with Tuesday-Wednesday-Friday group shadowed in other graphs. 

The original fifteen-minutes time series was resampled to one-hour and daily time series, by 

averaging the values, for consistency with current research, and further analysis, respectively. 

Shapiro-Wilk normality tests for power demand, daily mean of power demand and normalised 

power demand, with null hypotheses that hourly and daily time series were normally distributed 

revealed, that there was enough evidence to reject the null hypothesis and accept the alternative 

hypothesis, that tested time series were not normally distributed. Above was consistent with density 

histograms and Q-Q plots on Figure 5.19. 

 

Figure 5.19. Density histograms and Q-Q plots of power demand, daily mean, and normalised power demand in Ireland, for 
grouped day types from 2013 to 2023, with Tuesday-Wednesday-Friday group shadowed in other graphs. 
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Mann-Kendall trend tests for power demand, daily mean of power demand and normalised 

power demand, with null hypotheses that there was no trend in hourly and daily time series revealed, 

that there was enough evidence to reject the null hypothesis and accept the alternative hypothesis, 

that there was trend in tested time series, with a positive slope value. 

ADF stationarity tests for power demand, with null hypothesis that hourly and daily time series 

were not stationary revealed, that there was not enough evidence to reject the null hypothesis. 

However, KPSS stationarity test, with null hypothesis that the time series were stationary revealed 

that there was enough evidence to reject the null hypothesis and accept the alternative hypothesis 

that both time series were not stationary. Therefore, based on Statsmodels (2023), both time series 

were difference stationary. Performing tests for first-order differenced demands confirmed that first-

order differenced time series were stationary. 

ACF and PACF plots (Figure 5.20) were used for seasonality tests, by determining the significance 

of the lags. The blue shaded area signifies the 95% confidence intervals, calculated under the null 

hypothesis that the data are independently distributed. The blue dots are values of ACF and PACF for 

particular lag. Values beyond blue shaded area would indicate they are statistically significantly 

different from zero. Despite visible daily and weekly patterns in ACF, and annual pattern in PACF, in 

first-order differenced daily time series, all values lie within the 95% confidence intervals. Therefore, 

there was no statistically significant seasonality in either of them. 

 

 

Figure 5.20. ACF and PACF plots for first-order differenced hourly (top) and daily (bottom) power demand time series. 
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The classical decomposition was not able to break down power demand correctly, due to 

existence of multi-seasonal patterns in the time series.  Therefore, Multiple Seasonal Patterns 

Decomposition (MSTL), proposed by Bandura, Hyndman and Bergmeir (2021) was performed on 

hourly time series (Figure 5.21). The first component illustrated trend, with values 2900-3700MW, 

where the value experienced a steady increase over time, followed by a pronounced acceleration in 

2018, which was succeeded by a more moderate incline in 2019. Covid-19 disturbed the 2020 trend 

significantly. Finally, the trend reverted to its initial steady increase, continuing to rise at a gradual 

rate. Further three components depicted daily, weekly and annual seasonality. The daily pattern, with 

values -1000-1000MW, began with a nightly low, rose to a flat midday level, then climbed to an 

evening peak, and finally decreased at night, completing the cycle. The weekly pattern, with values -

750-500MW, caught weekdays and weekends, and the annual pattern varied -750-500MW, leaving 

residuals in range -250-250MW. That confirmed daily, weekly and annual seasonality in time series. 

 

Figure 5.21. MSTL decomposition of hourly power demand daily time series. Covid-19 lockdown period marked as dashed 
red lines. Columns present years 2013-2023, 2022, and one week in December 2022. 
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5.3.    Investigation into Weekly Lagged Power Demand Time Series 

To assess the potential use of weekly lagged time series in ODADF, an investigation was carried 

out to identify the values with the highest correlation for the SD approach (Figure 5.22). It revealed 

that lagging the demand by range 1-5 and 47-57 weeks yielded a correlation between variables 

exceeding 90%. 

 
Figure 5.22. Correlation between actual and weekly lagged power demand in Ireland. 

To estimate the influence of a single k-weekly, and a range from 1 to k-weekly lagged time series 

on ODADF MAPE, Linear Regression was used. Using adjusted values for one week ago or one year (52 

weeks) ago, gave MAPE in range 3.16-3.57% and 2.64-4.45%, respectively, with years 2020-2021 being 

the most affected by Covid-19 disturbances for the latter. As the value of k in range of 1 to k-weekly 

lagged values increased, the MAPE steadily decreased. A noticeable plunge in the MAPE was observed 

around value k=52, reaching MAPE in range 2.11-2.63%, after which the decline continued but at a 

slower pace (Figure 5.23). 

 

Figure 5.23. Influence of single k-weekly, and a range from 1 to k-weekly lagged time series on MAPE of one day-ahead 
forecasting of power demand in Ireland, using linear regression. 
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5.4.    Investigation into Daily Lagged Power Demand Time Series 

To assess the potential benefits of using daily lagged time series over weekly ones in ODADF, an 

investigation was undertaken to identify the values with the highest correlation (Figure 5.24).  

 

Figure 5.24. Correlation between actual and daily lagged power demand in Ireland. 

To estimate the influence of single k-daily, and a range from 2 to k-daily lagged time series on 

ODADF MAPE, Linear Regression was used. While MAPE from k-days ago demonstrated weekly 

seasonality, it decreased steadily for the range of 2 to k daily lagged values, with increasing value of k. 

A noticeable plunge in the MAPE was observed around value k=7, reaching MAPE in range 3.12-3.58%, 

after which the decline continued but at a slower pace (Figure 5.25). Therefore, using daily lagged time 

series would not be more beneficial than the weekly ones. 

 

Figure 5.25. Influence of single k-weekly, and a range from 1 to k-weekly lagged time series on MAPE of one day-ahead 
forecasting of power demand in Ireland, using linear regression. 
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5.5.    Investigation into Moving Window Size of Power Demand Time Series 

To determine the optimal window size for ODADF using Moving Window (MW) approach, an 

investigation was carried out using Linear Regression (Figure 5.26). MAPE decreased steadily with 

increasing value of k. A noticeable plunge in the MAPE was observed around value k=7 and k=14, 

reaching MAPE in range 2.51-2.80%, and 2.24-2.59%, respectively. Then, the decline continued but at 

a slower pace, reaching minimum around k=36, achieving MAPE in range 2.19-2.50%. Further 

increasing of k value increased MAPE (Figure 5.26). 

 

Figure 5.26. Influence of window size on MAPE of forecasting of power demand in Ireland, using linear regression. 

5.6.    Scaling and Encoding the Data for Modelling 

Power demand and temporal features were scaled and encoded (Table 5.4) as described in 

Chapter 3. The conversion approach was validated by correlation between scaled power demand and 

encoded features (Figure 5.27). 

Variable Original Range Conversion 
Converted 

Range 

Power Demand 1684.25 to 5517.75 Scaling by division by 5517.75 0.3052 to 1.0000 

Day of the Week Monday to Sunday One-Hot Encoding [1, 0, 0, 0, 0, 0, 0] 

Observed Holiday Yes or No Numerical Encoding 1 or 0 

Day of the Year 1 to 365 (366) 

Cyclical 
Encoding 

 

[-1 to 1, -1 to 1] 

Hour of the Day 0 to 23 

Table 5.4. Scaling and encoding the data for modelling. 

 
Figure 5.27. Correlation between scaled power demand and extracted and encoded temporal features 
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5.7.    Evaluation of Baseline Models 

Baseline models, described in Chapter 3, were considered for ODADF as a starting point and 

reference for comparison with more complex models developed in experimentation phase of the 

research. The results, being MAPE per day type, month, and hour, as well as visualisation of baseline 

models predictions against actual demand for year 2019, were shown on Figures 5.28-5.29. 

 

 

 

Figure 5.28. Forecast of power demand in Ireland for year 2019 by baseline models (1-3). 

 



49 

 

 

 

 

 

Figure 6.17. Forecast of power demand in Ireland for year 2019 by baseline models (4-7). 
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5.8.    Defining Supervised Learning Problems for Similar Day and Moving Window Methods 

Supervised learning problems were defined from power demand time series and temporal 

features by SD approach, utilising historical weekly lags of the power demand (Table 5.5), and MW 

approach, utilising continuous historical demand values (Table 5.6). In practice, ODADF is conducted 

several hours in advance. Therefore, to avoid the double forecasting phenomenon, partially available 

current-day data was excluded from consideration. 

Record 
Time 
Index 

In 
Hours 

Independent Variable X 
Dependent 
Variable Y 

Temporal Variables 
Lagged 

Power Demand Values 

Power 
Demand 

Y 
Holidays 

H 
Day of Week 

DoW 
Day of Year 

DoY 
Hour of Day 

HoD 

tK=t0+k.h H(tK) DoW(tK) DoY(tK) HoD(tK) 

[Y(tK-n1
.7.24.h, Y(tK-n2

.7.24.h, 
…, Y(tK-nL

.7.24.h] 
 

where: 
k=1, 2, … (record index) 

L: number of weekly lags 
tK: timestamp k in hours 

n1, n2, … nL: 
number of lags in weeks 

Y(tK) 

Table 5.5. Supervised learning problem definition for similar days approach (univariate time series of power demand in 
Ireland and temporal features). 

Record 
Time 
Index 

In 
Hours 

Independent Variable X 
Dependent 
Variable Y 

Temporal Variables 
Moving Window of 

Power Demand Values 

Power 
Demand 

Y 
Holidays 

H 
Day of Week 

DoW 
Day of Year 

DoY 
Hour of Day 

HoD 

tK=t0+k.h H(tK) DoW(tK) DoY(tK) HoD(tK) 

[Y(tK-(24.(1+wS)-1).h, 
Y(tK-(24.(1+wS)-2).h, 

…, Y(tK-(24.(1+wS)-wS).h] 
 

where: k=1, 2, … (record index) 
wS: window size in days 

 
current day not considered 

Y(tK) 

Table 5.6. Supervised learning problem definition for moving window approach (univariate time series of power demand in 
Ireland and temporal features). 

5.9.    Conclusion 

In this chapter, supervised learning problems for SD and MW approaches were defined, and 

potential weekly lags and window size were identified, respectively. 

Firstly, DST distortion was removed from power demand time series, and missing values and 

outliers were replaced using appropriate methods, which were proved to be valid by comparison of 

distributions from power demand datasets before and after the process. 



51 

 

Secondly, descriptive statistics revealed possible daily, weekly and annual seasonality of power 

demand in Ireland, disrupted by Covid-19 lockdown in Ireland in 2020. Furthermore, similarities and 

differences between daily patterns were identified. Subsequently, inferential hypotheses tests 

revealed that power demand time series was not normally distributed, had positive trend, was first-

order difference stationary and, despite visible daily and weekly patterns, its seasonality was not 

statistically significant. Therefore, Auto-Regressive models were not expected to perform well for 

ODADF in Ireland. 

Then, baseline models were used as starting point and reference for more complex models 

developed in experimentation phase of the research, achieving 90.7-553.9MW, 128.0-647.2MW, and 

2.71-16.60% for MAE, RMSE, and MAPE, respectively. 

Finally, power demand and temporal features were scaled and encoded. The day of the year and 

hour of the day variables were converted to cyclical format, to highlight their seasonality, while the 

day of the week variable was encoded to sparse vector format. The validity of that approach was 

confirmed through a correlation study.  



52 

 

6. Multivariate Data Preparation 

6.1.    Weather Factors’ Data Cleaning - Daylight-Saving Time Distortions Removal 

Weather factors time series, affected by DST, were shifted back by one hour to restore their 

original continuity, and one-hour gaps in autumn were filled using monthly mean values. 

6.2.    Exploratory Data Analysis: Weather Factors’ Time Series 

Descriptive statistic for three weather factors from twenty-two weather stations in Ireland, for 

years 2014-2022 was performed for all, and given for three exemplary weather stations in Table 6.1. 

Considering the variations in the values of respective factors among weather stations, and to mitigate 

the challenges posed by high dimensionality of data, potential solutions for identifying representative 

stations were outlined in section 6.4. 

Weather 
station 

Athenry Shannon Airport Valentia Observatory 
Temperature 

oC 
Relative 

Humidity % 
Wind Speed 

KMH 
Temperature 

oC 
Relative 

Humidity % 
Wind Speed 

KMH 
Temperature 

 oC 
Relative 

Humidity % 
Wind Speed 

KMH 

Mean 10.0 83.5 13.4 10.7 81.9 16.6 11.3 80.6 17.8 

ϭ 4.9 11.6 7.4 4.8 12.3 9.7 3.9 11.4 10.4 

Min -8.0 27.0 0.0 -4.8 24.0 0.0 -4.9 22.0 0.0 

Median 10.1 87.0 13.0 10.8 85.0 14.8 11.3 82.0 16.7 

Max 30.1 100.0 61.1 31.5 100.0 96.3 27.9 100.0 88.9 

Table 6.1. Descriptive statistics of weather factors from three exemplary weather stations in Ireland for years 2014-2022 

6.3.    Correlation Between Lagged Weather Factors and Power Demand 

To evaluate correlations between weather factors and power demand time series, full datasets 

were plotted individually for power demand, temperature, relative humidity and wind speed from all 

twenty-two weather stations, with colour-coded seasons (Figure 6.1). They revealed that all weather 

factors were correlated with power demand, with temperature and wind speed showing a negative 

correlation, while relative humidity demonstrated a positive correlation. 

To estimate correlations between lagged weather factors and power demand time series, 

correlation plots for each factor against the value of lag in hours were plotted, for each weather 

station (Figure 6.2). All factors exhibited daily periodicity, with peak values occurring at a lag of 15+24.k 

hours, for positive integer k values. Taking into consideration, that data from previous day is not fully 

available at the time of forecasting, the first possible lag value of 39-hours was selected for further 

analysis. For lagged temperature and wind speed, the highest correlation value was observed with 

data from Mount Dillon, whereas for lagged relative humidity, Gurteen's data exhibited the highest 

correlation. 
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Figure 6.1. Comparison of power demand, temperature, relative humidity and wind speed time series in Ireland 2013-2023 

 

 

Figure 6.2. Correlation between power demand and lagged weather factors, such as temperature, relative humidity and 
wind speed time series in Ireland from 2013 to 2023 
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6.4.    Representative Weather Stations 

Given the infeasibility of incorporating data from twenty-two weather stations into the research, 

a study was undertaken to identify representative stations for each weather factor. Three approaches 

were proposed, such as virtual stations created by Linear and Lasso Regression, as well as the most 

important single weather station revealed by Lasso Regression and correlation study.  

6.4.1. Virtual Weather Station Created by Linear Regression of all Real Stations 

Linear Regression was used to create the first virtual weather station, where individual weather 

factors was the sole explanatory variable for power demand. Absolute values of coefficients (Figure 

6.3) were normalised using MinMax scaler, and then used to predict respective factors (Figure 6.4). 

 

Figure 6.3. Normalised coefficients of linear regression used to create virtual weather station 

 

 

 

 
Figure 6.4. Temperature, relative humidity and wind speed from virtual weather station created with linear regression of 

respective factors from all twenty-two real weather stations in Ireland. 
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6.4.2. Virtual Weather Station Created by Lasso Regression of Selected Real Stations 

Lasso Regression was used to create the second virtual weather station. Value of 

hyperparameter alpha was increased until the number of non-zero coefficients reached specified 

values (Figure 6.5). Absolute values of coefficients were normalised and used for prediction of factors. 

 

 

 

Figure 6.5. Influence of hyperparameter alpha on the number of non-zero coefficients of lasso regression for temperature, 
relative humidity and wind speed. 

6.4.3. Single Real Weather Station and Validation of Results 

Validation of the results was performed by correlation study between actual demand and lagged 

weather factors for each solution (Figure 6.6), comparison of individual distributions (Figure 6.7), and 

correlation plots (Figure 6.8). Taking into consideration results from Section 6.4, Mount Dillon was 

selected as single real weather station, which could represent weather factors for the whole Republic 

of Ireland. Table 6.2 summarises weather factors from all representative weather stations. 

Weather Stations Temperature oC Relative Humidity % Wind Speed KMH 

Virtual Linear Regression Virtual_LR_22_T Virtual_LR_22_H Virtual_LR_22_W 

Virtual Lasso Regression Virtual_Lasso2_T Virtual_Lasso5_H Virtual_Lasso2_W 

Single Real Station MountDillon_T MountDillon_H MountDillon_W 

Table 6.2. Summary of representative weather stations in Ireland for power demand forecasting 
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Correlation Between Power Demand and 39 Hours Lagged Weather Factors 
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Figure 6.6. Correlation between power demand and 39-hours lagged weather factors. 

 

 
Figure 6.7. Kernel Density Estimate for temperature, relative humidity and wind speed from virtual weather stations 

created using linear and lasso regression, single real weather station and all twenty-two weather stations.  

 

 

Figure 6.8. Correlations between power demand and temperature, relative humidity and wind speed from virtual weather 
stations created using linear and lasso regression.  
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Figure 6.9 depicted the time series of temperature, relative humidity, and wind speed from the 

approaches achieving the highest correlation with power demand. 

 

 

 
Figure 6.9. Temperature and relative humidity from virtual weather station created with lasso regression of two and five 

real weather stations, respectively. Wind speed from Mount Dillon real weather station in Ireland. 

6.5.    Feature Selection for Potential Base-learners 

6.5.1. Feature Selection for Similar Day Approach 

Weekly lags with correlation above 90%, temporal and weather’s features were considered to 

create supervised learning problem for SD approach. Investigation into feature importance was 

performed to select the best ones, utilising methods such as Forward (Figure 6.10) and Backward 

(Figure 6.11) Selection Regression, Lasso Features Selection Regression (Figure 6.12). 

 
Figure 6.10. Features selection for similar days approach using forward selection regression. 
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Figure 6.11. Features selection for similar days approach using backward selection (elimination) regression. 

 

Figure 6.12. Features selection for similar days approach using lasso selection (elimination) regression. 

 

Given that the inclusion of weather factors from virtual weather station created using Linear 

Regression yielded the best results, they were further investigated for SD approach using Random 

Forest and Permutation Feature Importance (Figure 6.13). 

 
Figure 6.13. Random Forest Feature Importance and Permutation Feature Importance for similar days approach. 
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Taking above results into consideration, the final set of twenty-nine features for SD approach was 

selected to include: historical power demand 1-5, 48-52, and 54-57 weeks ago, holidays, days of the 

week, day of the year, hour, as well as temperature, relative humidity and wind speed, lagged by 39-

hours, from virtual weather station created with Linear Regression.  

6.5.2. Feature Selection for Moving Window Approach 

Investigation into feature importance for window sizes of seven, fourteen and thirty-five days 

(the new minimum MAPE) was performed (Figure 6.14), for three representative weather stations, to 

select features achieving the optimal value of MAPE for MW approach (Figure 6.15). 

 
Figure 6.14. Influence of window size on MAPE of forecasting of power demand in Ireland, using linear regression. 

 

 

 
Figure 6.15. Features selection for moving window approach using forward selection regression. 
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Taking above results into consideration, the final set of features for MW approach was selected 

to include: moving window of historical power demand with size of thirty-five days, holidays, day of 

the year, hour, as well as temperature, relative humidity and wind speed, lagged by 39-hours, from 

virtual weather station created with Lasso Regression.  

6.6.    Redefining Supervised Learning Problems by Including Weather Factors 

Supervised learning problems, defined in section 5.7, were amended to include features selected 

in section 6.5 for SD (Table 6.3), and MW approaches (Table 6.4). 

Record 
Time 
Index 

In 
Hours 

Independent Variable X 
Dependent 
Variable Y 

Temporal Variables Weather Variables 
Lagged 

Power Demand Values 

Power 
Demand 

Y 

Holidays, Day of Week, 
Day of Year, Hour of Day 

H, DoW, DoY, HoD 

Temperature, Relative 
Humidity, Wind Speed 

T, RH, WS 

tK=t0+k.h 
[H(tK), DoW(tK), 
DoY(tK), HoD(tK) 

[T(tK-39.h), 
RH(tK-39.h), 
WS(tK-39.h)] 

 
Virtual weather station 

created using 
Linear Regression 

[Y(tK-n1
.7.24.h, Y(tK-n2

.7.24.h, 
…, Y(tK-nL

.7.24.h] 
 

k=1, 2, … (record index) 
L: number of weekly lags 
tK: timestamp k in hours 

n1, n2, … nL: 
1…5, 48…52, 54…57 (weeks) 

Y(tK) 

Table 6.3. Supervised learning problem definition for similar days approach, including weather factors 

Record 
Time 
Index 

In 
Hours 

Independent Variable X 
Dependent 
Variable Y 

Temporal Variables Weather Variables 
Moving Window of 

Power Demand Values 

Power 
Demand 

Y 

Holidays, Day of Year, 
Hour of Day 
H, DoY, HoD 

Temperature, Relative 
Humidity, Wind Speed 

T, RH, WS 

tK=t0+k.h [H(tK), DoY(tK), HoD(tK)] 

[T(tK-39.h), 
RH(tK-39.h), 
WS(tK-39.h)] 

 
Virtual weather station 

created using 
Lasso Regression 

[Y(tK-(24.(1+wS)-1).h, 
Y(tK-(24.(1+wS)-2).h, 

…, Y(tK-(24.(1+wS)-wS).h] 
 

where: k=1, 2, … (record index) 
wS=35 (window size in days) 

 
current day not considered 

Y(tK) 

Table 6.4. Supervised learning problem definition for moving window approach, including weather factors. 

6.7.    Conclusion 

In this chapter, the final sets of features were separately selected for SD and MW approaches, 

and the supervised learning problems were amended, accordingly. DST distortion was removed from 

weather factors time series, and correlation between lagged factors and power demand was 

evaluated. Representative weather stations for each weather factors were found to be valid by 

correlation study. For SD approach, the LR-based virtual station excelled, while Lasso Regression was 

optimal for the MW method.  



61 

 

7. Experimentation with Potential Base-Learners of Ensemble Learning Models 

7.1.    Architectures and Hyperparameters Tuning of Base-Learners 

Architectures of considered Deep Learning (DL) models were shown in Table 7.1. 

Hyperparameters of all potential base-learners with their values ranges, and their best values found 

by Bayesian optimisation with 10-fold cross-validation were shown in Table 7.2. 

Group 
of layers 

Model architecture 

Inclusion LSTM Model CNN Model 

Description Remarks Description Remarks 

1 LSTM 

return_seq=False 
for last layer 

Convolutional1D 
BatchNormalisation 

MaxPooling1D 
Dropout 

filters x1 
- 

kernel_size 
cnn_dropout 

Obligatory 

2 LSTM 
Convolutional1D 

BatchNormalisation 
MaxPooling1D 

Dropout 

filters x2/4, respectively 
- 

kernel_size 
cnn_dropout 

Optional 

3 LSTM 

4 

Dense 
BatchNormalisation 

Dropout 
Dense 

dense_units 
- 

dense_dropout 
1 unit 

Flatten 
Dense 

BatchNormalisation 
Dropout 
Dense 

- 
dense_units 

- 
dense_dropout 

1 unit 

Obligatory 

Table 7.1. Deep learning potential base-learners’ architectures. 

 

Regressor 
Data 

Shape 

Hyperparameters 

Name Range of Values Remarks 

Best Values 

Similar 
Day 

Moving 
Window 

Linear 

2D 

fit_intercept False, True - False False 

Ridge 
fit_intercept 

alpha 
False, True 
10-9…103 

- 
logarithmic scale 

False 
2.17.10-4 

True 
4.82.10-4 

Lasso 
True 

1.38.10-4 
True 

2.58.10-4 

SVM 

kernel 
C 

gamma 
epsilon 

linear, rbf 
10-6…103 

10-9…101 
10-9…101 

- 
logarithmic scale 
logarithmic scale 
logarithmic scale 

linear 
2.23.10-1 
9.10.10-4 
1.99.10-4 

linear 
1.51 

2.41.10-3 

3.30.10-3 

GBM 
n_estimators 
max_depth 

learning_rate 

10…250 
10…250 

10-9…10-1 

- 
- 

logarithmic scale 

90 
100 

3.64.10-1 

210 
60 

4.69.10-2 

MLP 

hidden_layer_sizes 
learning_rate 

batch_size 
max_iter 

(d1,)…(d1, d2) 

constant, invscaling, adaptive 
1, 24, 72, 168 

25, 50, 100 

d1, d2 = 1…1024 
- 
- 
- 

(238, 47) 
constant 

24 
100 

(249, 18) 
invscaling 

24 
25 

LSTM 

3D 

no_lstm_layers 
lstm_units 

dense_units 
dense_dropout 

batch_size 
learning_rate 

epochs 

1, 2, 3 
1…1024 
1…1024 
0…0.5 

1, 24, 72, 168 
10-9…10-1 

25, 50, 100 

- 
- 
- 
- 
- 

logarithmic scale 
- 

1 
43 
58 

3.68.10-2 
24 

2.91.10-1 
25 

not 
performed 
for moving 

window 
approach 

CNN 

no_cnn_layers 
filters 

kernel_size 
cnn_dropout 
dense_units 

dense_dropout 
batch_size 

learning_rate 
epochs 

1, 2, 3 
1…256 

2…7 
0…0.5 

1…1024 
0…0.5 

1, 24, 72, 168 
10-9…10-1 

25, 50, 100 

- 
1st layer 

- 
- 
- 
- 
- 

logarithmic scale 
- 

1 
20 
3 

9.98.10-2 
236 

7.60.10-4 
24 

1.86.10-3 
50 

Table 7.2. Base-learners hyperparameters and their values selection, and their best values found by Bayesian optimisation. 
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7.2.    Evaluation of Similar Day Approach Based Base-Learners 

7.2.1.  Similar Day Approach Baseline Base-Learners 

Linear Regression was used for SD - one week, one year (52 weeks) and range 1-52 weeks ago - 

to get adjusted ODADF in Ireland in year 2019. Their evaluation was shown on Figure 7.1. 

 

 

 

Figure 7.1. Forecast of power demand in Ireland for year 2019 by adjusted similar days one week, one year (52 weeks) and 
range 1-52 weeks ago, using linear regression. 
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7.2.2. Similar Day with Temporal and Weather Features Approach Base-Learners 

Evaluation of machine and deep learning models, described in previous section, for ODADF in 

Ireland in year 2019, was shown on Figures 7.2-7.3. 

 

 

 

 

Figure 7.2. Forecast of power demand in Ireland for year 2019 by linear, ridge, lasso and SVM regression. 
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Figure 7.3. Forecast of power demand in Ireland for year 2019 by GBM, MLP, CNN and LSTM regression. 
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7.3.    Evaluation of Moving Window Approach Based Base-Learners 

7.3.1. Moving Window Approach Baseline Base-Learners 

Evaluation of machine learning models for three sizes of univariate MW, described in Section 

6.5.2, for ODADF in Ireland in year 2019, was shown on Figure 7.4. 

 

 

 

Figure 7.4. Forecast of power demand for year 2019 by linear regression for moving window size of 7, 14 and 35 days. 

7.3.2. Moving Window with Temporal and Weather Features Approach Base-Learners 

Evaluation of machine learning models for MW approach with temporal and weather features, 

described in previous section, for ODADF in Ireland in year 2019, was shown on Figures 7.5-7.6. 
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Figure 7.5. Forecast of power demand in Ireland for year 2019 by linear, ridge, lasso and SVM regression. 
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Figure 7.6. Forecast of power demand in Ireland for year 2019 by GBM and MLP regression. 

7.4.    Final Selection of Base-Learners 

Following analysis of potential base-learners’ results from sections 7.1-7.3, twenty out of twenty-

seven models (Figure 7.7, Table 7.3), achieving the lowest MAPE for ODADF in year 2019, were 

selected as base-learners for further experimentation with ensembles. Ranking of the twenty base-

learners as function of day, month and hour, based on MAPE for year 2019 was shown on Figure 7.8. 

 

Figure 7.7. Ranking of base-learners on MAPE for 2019. 
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Model Performance metrics for year 2019 

Name Description (WF=weather features) MAE in MW RMSE in MW MAPE in % 

SD_F_CNN SD-based CNN with WF 72.8 97.3 2.226 

SD_LR_1_52_Weeks_Ago SD-based LR of 1-52 weekly lagged demand 73.8 103.9 2.231 

SD_F_LSTM SD-based LSTM with WF 75.6 100.4 2.320 

SD_F_LgtGBM SD-based GBM with WF 77.0 104.0 2.330 

SD_F_LinReg SD-based LR with WF 76.4 105.6 2.334 

SD_F_RidgeR SD-based Ridge Regression with WF 76.4 105.6 2.334 

SD_F_SVMReg SD-based SVM with WF 76.9 107.6 2.342 

MW_35D_F_LgtGBM MW-based GMB with WF 79.4 114.2 2.370 

MW_35D_F_SVMReg MW-based SVM with WF 79.3 121.8 2.387 

SD_F_LassoR SD-based Lasso Regression with WF 78.6 109.1 2.414 

MW_35D_F_RidgeR MW-based Ridge Regression with WF 82.7 120.8 2.484 

MW_35D_F_LinReg MW-based LR with WF 83.0 122.0 2.491 

MW_LR_36_Days_Window MW-based LR, window size 36 days 83.3 122.2 2.497 

SD_F_MLPerc SD-based MLP with WF 83.6 109.1 2.563 

MW_LR_14_Days_Window MW-based LR, window size 14 days 86.3 127.1 2.585 

SD_LR_52_Weeks_Ago SD-based LR of 52 weeks ago 88.2 126.7 2.637 

SD_52_Weeks_Ago SD 52 weeks ago 90.7 128.0 2.706 

MW_LR_7_Days_Window MW-based LR, window size 7 days 93.1 139.0 2.798 

MW_35D_F_LassoR MW-based Lasso Regression with WF 102.8 153.0 3.079 

MW_35D_F_MLPerc MW-based MLP with WF 108.1 153.3 3.262 

SD_1_Week_Ago SD 1 week ago 118.5 190.0 3.567 

SD_LR_1_Week_Ago SD-based LR of 1 week ago 118.7 190.0 3.571 

TBATS Trigonometric seasonal decomposition of time series 172.8 227.0 5.119 

NBEATS Neural basis expansion analysis for time series 188.5 246.9 5.576 

Last_Year_Mean Mean value of previous year 514.8 603.6 16.468 

Historical_Years_Mean Mean value of previous years 547.8 639.6 16.522 

Naïve_Last_Year_Value Last value seen in previous year 553.9 647.2 16.601 

Table 7.3. Performance metrics for potential base-learners forecasting power demand in Ireland for year 2019. Twenty 
base-learners, selected for further experimentation with meta-learners of ensembles, were marked in grey. 

 

Figure 7.8. Ranking of 20 base-learners as function of day, month and hour, based on MAPE for year 2019. 
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Comparison of distributions, forecasted by base-learners and actual power demands, for year 

2019 was shown on Figure 7.9. As power demand was not normally distributed, non-parametric 

Kolmogorov-Smirnov test was used to investigate whether forecasted and actual demand, in pairs, 

were from the same distribution, with the null hypothesis that two samples were from the same 

distribution. Results were shown in Table 7.4. 

 
Figure 7.9. Comparison of forecasted by base-learners and actual power demand distributions for Year 2019. 

 

Samples of predictions of below base-learners and actual demand in 2019  

were from the same distributions were from different distributions 

SD_LR_1_52_Weeks_Ago SD_F_CNN 

MW_35D_F_LgtGBM SD_F_LSTM 

MW_35D_F_SVMReg SD_F_LgtGBM 

MW_35D_F_RidgeR SD_F_LinReg 

MW_35D_F_LinReg SD_F_RidgeR 

MW_LR_36_Days_Window SD_F_SVMReg 

MW_LR_14_Days_Window SD_F_LassoR 

SD_LR_52_Weeks_Ago SD_F_MLPerc 

MW_LR_7_Days_Window MW_35D_F_LassoR 

SD_LR_1_Week_Ago MW_35D_F_MLPerc 

Table 7.4. Results of Kolmogorov-Smirnov test for predictions of base-learners and actual power demand in 2019. 

7.5.    Percentage Share of Base-Learners in the Best Hourly Predictions for Years 2015-2019 

The percentage share of base-learners in the best hourly predictions was shown by year (Figure 

7.10), and by day type (Figure 7.11). 

 

Figure 7.10. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by year. 
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Figure 7.11. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by day type. 

7.6.    Discussion Regarding Results of the Experimentation with Base-Learners 

Experimentation with potential base-learners revealed significant variations in the performance 

of models. For example, MAE, RMSE and MAPE varied 72.8-118.8MW, 97.3-190.0MW, and 2.226-

3.571%, respectively. While base-learners trained on SD dataset performed better on average metrics 

than those trained on MW dataset, all models showed fluctuations in their MAPE across different days 

of the week, months and hours. Therefore, there was no single best or worst model in all categories. 

The lowest MAPE was observed on Thursdays and Saturdays, with GBM (MW) model performing 

the best. However, almost all models underperformed on Mondays and holidays occurring on 

weekdays. While similar day CNN model achieved the lowers average MAPE, other models, such as 

Linear Regression of 1-52 weeks ago, SVM (MW), Linear Regression (SD), GBM (SD), shared the first 

place for Monday to Wednesday, Thursday to Saturday, Sunday, and holidays occurring on weekdays, 

respectively. Base-learners predicted specific days of the week better than others, based on the 

approach of dataset creation. MW-based models generally performed better on Thursdays, Fridays, 

and Sundays. Conversely, SD-based models had superior performance on the other days. 

Examining monthly performance revealed that the lowest MAPE was observed in July, with SVM 

(SD) emerging as the top performer. On the other hand, December, April, and January yielded the 

least favourable results. The best-performing models varied from month to month, and no single 

model consistently underperformed across all months. Notably, LSTM (SD) was the only model to excel 

in two consecutive months: April and May. Furthermore, while MW-based models generally achieved 
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better results for February, March, September and November, the SD-based models had superior 

performance in the other months. 

Upon analysing hourly performance, it was evident that the MAPE was at its lowest at 9 a.m. and 

8 p.m., with CNN (SD) standing out as the best performer during these hours. Conversely, the period 

from 5 a.m. to 9 a.m. consistently showed less-promising results, with 7 a.m. identified as the most 

challenging hour. The model rankings experienced notable shifts between 4 a.m. to 7 a.m. and again 

from 8 p.m. to 11 p.m. Between 10 p.m. and 4 a.m., GBM (MW) took the lead, closely followed by 

SVM (MW). At 5 a.m., the Linear Regression of 1-52 weeks ago was the top-performing, with SVM 

(MW) right behind. By 6 a.m., LR (SD) became the model of choice, with Ridge (SD) as the runner-up. 

Lastly, from 7 a.m. to 9 p.m., CNN (SD) led the pack, but between 7 a.m. to 5 p.m., LSTM (SD) and GBM 

(SD) closely followed it, with the Lasso Regression (SD) and SVM (MW) also making a significant impact. 

Finally, while comparison of predictions by base-learners and actual power demand in 2019 

distributions looked similar visually, inferential statistics tests revealed that, majority of moving 

window base-learners’ predictions, were from the same, and majority of similar day models, were 

from different than actual demand distribution. 

7.7.    Conclusion 

The diverse performance of various base-learner models across different time frames, be it days 

of the week, months, or specific hours, underscored the value of leveraging a variety of models when 

constructing ensemble systems. No single model consistently excelled or faltered in every scenario. 

This variability reinforced that a diverse set of models could complement each other's strengths and 

mitigate each other's weaknesses, potentially leading to a more robust and accurate ensemble 

prediction in ODADF.   
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8. Experimentation with Integration Methods of Base-Learners into Ensemble Learning Models 

8.1.    Architectures of Ensembles 

Three stacking approaches to obtain ensemble predictions were investigated: heuristic rules, 

optimal model classification-based predictors, and regression-based base-learners’ predictions.  

Heuristic rules were baseline of ensemble modelling. Five following techniques were used: 

• mean and median of all base-learners’ predictions, 

• base-learner with lowest MAPE at the same time one day, one week, and one year (52 weeks) 
ago was selected to make the prediction. 

Classification-based ensembles used classifier as meta-learner to predict which base-learner 

provided the best estimate for the current time instant based on explanatory variables, such as 

temporal and weather factors. The output of meta-learner was then interpreted as probability that 

each base-learner yields the best prediction. Classifiers such as logistic regression, SVM, GBM and MLP 

were considered as classification meta-learners. The product of probability of base-learners and their 

prediction value was then taken as ensemble prediction of ODADF in Ireland in 2019.  

Finally, regression-based ensembles, considering limited and unlimited number of base-learners’ 

predictions, with LR, SVM, GBM and MLP as meta-learners were examined. Base-learners' predictions 

were used as the independent variable for meta-learners to forecast ODADF in Ireland for 2019. 

8.2.   Hyperparameters Tuning of Ensembles’ Meta-Learners 

Architectures and hyperparameters of considered meta-learners of ensembles, with their values 

ranges, and their best values found by Bayesian optimisation with 10-fold cross-validation were shown 

in Tables 8.1-8.2.        

Classifying 
Meta-learner 

Data 
Shape 

Hyperparameters 

Name Range of Values Remarks 
Best Values 

Logistic 
Regression 
Classifier 

2D 

weather_station 
fit_intercept 

C 

linear, lasso, Mount Dillon 
False, True 
10-6…103 

- 
- 

logarithmic scale 

linear regression 
True 

2.88.10-3 

SVM 
Classifier 

weather_station 
kernel 

C 
gamma 

linear, lasso, Mount Dillon 
linear, rbf 
10-6…103 

10-9…101 

- 
- 

logarithmic scale 
logarithmic scale 

linear regression 
rbf 

7.52.10-1 

6.05.10-2 

GBM 
Classifier 

weather_station 
n_estimators 
max_depth 

learning_rate 

linear, lasso, Mount Dillon 
10…500 
10…500 

10-9…10-1 

- 
- 
- 

logarithmic scale 

lasso regression 
130 
260 

3.08.10-4 

MLP 
Classifier 

weather_station 
hidden_layer_sizes 

learning_rate 
batch_size 
max_iter 

linear, lasso, Mount Dillon 
(d1,)…(d1, d2) 

constant, invscaling, adaptive 
1, 24, 72, 168 

25, 50, 100 

- 
d1, d2 = 1…1024 

- 
- 
- 

lasso regression 
(2, 49) 

invscaling 
24 
25 

Table 8.1. Classifying meta-learners’ hyperparameters and their values selection, and their best values. 
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Regressor 
Meta- 
learner 

Data 
Shape 

Hyperparameters 

Name Range of Values Remarks 
Best Values 

Selected All 

Linear 

2D 

fit_intercept False, True - True (a) True 

SVM 
Regressor 

kernel 
C 

gamma 
epsilon 

linear, rbf 
10-6…103 

10-9…101 

10-9…101 

- 
logarithmic scale 
logarithmic scale 
logarithmic scale 

linear (b) 
5.22.10-1 

7.59.10-1 

1.70.10-3 

rbf 
5.61.10-1 

3.34.10-1 

1.82.10-3 

GBM 
Regression 

n_estimators 
max_depth 

learning_rate 

10…500 
10…500 

10-9…10-1 

- 
- 

logarithmic scale 

230 (c) 
440 

4.17.10-2 

290 
500 

3.55.10-2 

MLP 
Regression 

hidden_layer_sizes 
learning_rate 

batch_size 
max_iter 

 (d1,)…(d1, d2) 

constant, invscaling, adaptive 
1, 24, 72, 168 

25, 50, 100 

d1, d2 = 1…1024 
- 
- 
- 

 (198, 48) (d) 
invscaling 

24 
25 

 (250, 21) 
adaptive 

24 
100 

A combination of up to 6 base-learners was selected in the first approach: 
       (a) SD_F_SVMReg, SD_F_LgtGBM, SD_F_MLPerc, MW_LR_14_Days_Window, MW_35D_F_LinReg, MW_35D_F_LassoR 
      (b) SD_F_LinReg, SD_F_LassoR, SD_F_LgtGBM, MW_LR_14_Days_Window, MW_35D_F_RidgeR, MW_35D_F_LassoR 
      (c) SD_F_LassoR, SD_F_SVMReg, SD_F_LgtGBM, SD_F_CNN, MW_LR_14_Days_Window, MW_35D_F_SVMReg 
      (d) SD_F_LinReg, SD_F_LassoR, SD_F_LgtGBM, SD_F_MLPerc, MW_LR_7_Days_Window, MW_35D_F_LassoR 

Table 8.2. Regression meta-learners’ hyperparameters, their values selection, and their best values. 

8.3.    Evaluation of Heuristic Rule-Based Ensembles 

Evaluation of heuristic rule-based ensembles, described in Chapter 3 and Section 8.1, for ODADF 

in Ireland in year 2019, was shown on Figures 8.1-8.2. 

 

 
Figure 8.1. Forecast of power demand in Ireland for year 2019 by heuristic rule-based ensembles (1-2). 

 



74 

 

 

 

 
Figure 8.2. Forecast of power demand in Ireland for year 2019 by heuristic ensembles (3-5). 

 

8.4.    Evaluation of Classification-Based Ensembles 

Evaluation of classification-based ensembles, described in Chapter 3 and Section 8.2, for ODADF 

in Ireland in year 2019, was shown on Figure 8.3. 
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Figure 8.3. Forecast of power demand in Ireland for year 2019 by classification-based ensembles. 

 

8.5.    Evaluation of Regression-Based Ensembles 

Evaluation of regression-based ensembles, described in Chapter 3 and Section 8.2, for ODADF in 

Ireland in year 2019, was shown on Figure 8.4. 
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Figure 7.10. Forecast of power demand in Ireland for year 2019 by regression-based ensembles. 

 

 
Figure 8.4. Forecast of power demand in Ireland for year 2019 by regression-based ensembles. 
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8.6.    Ranking of Base-Learners and Ensembles for Year 2019 

Ranking of base-learners and ensembles from Sections 8.3-8.5, based on average MAPE for 

ODADF in Ireland in year 2019, was presented on Figure 8.5. More performance metrics achieved by 

ensemble learning models were presented in Table 8.3. The classification-based ensembles were the 

winners of the study. 

 

Figure 8.5. Ranking of potential base-learners and ensembles based on average MAPE for one day-ahead power demand in 
year 2019 in Ireland. 

 
Model PERFORMANCE METRICS FOR YEAR 2019 

Name Description 
MAE 

in MW 
RMSE 
in MW 

MAPE 
in % 

ENS_CLA_MLPerc Ensemble with MLP as classification meta-learner 64.1 89.1 1.919 

ENS_CLA_SVMClas Ensemble with SVM as classification meta-learner 65.3 92.3 1.960 

ENS_CLA_LogRegC Ensemble with Logistic Regression as meta-learner 65.3 92.1 1.960 

ENS_CLA_LgtGBMC Ensemble with GBM as classification meta-learner 66.1 94.1 1.985 

ENS_HEU_Median_of_BL Heuristic ensemble, median of 20 BL predictions 66.7 95.0 2.009 

ENS_HEU_Mean_of_BL Heuristic ensemble, mean of 20 BL predictions 67.3 96.8 2.020 

ENS_REG_ALL_MLPerc Ensemble with MLP as regression meta-learner of 20 BL 70.5 95.9 2.096 

ENS_HEU_Best_BL_Day_Ago Heuristic ensemble, best predictors one day ago 72.8 105.1 2.199 

ENS_REG_ALL_SVMReg Ensemble with SVM as regression meta-learner of 20 BL 74.2 101.0 2.228 

ENS_REG_ALL_LgtGBM Ensemble with GBM as regression meta-learner of 20 BL 74.3 101.4 2.235 

ENS_REG_ALL_LinReg Ensemble with LR as regression meta-learner of 20 BL 74.6 101.1 2.253 

ENS_REG_LgtGBM Ensemble with GBM as regression meta-learner of 6 BL 75.1 102.3 2.261 

ENS_REG_LinReg Ensemble with LR as regression meta-learner of 6 BL 75.7 102.4 2.289 

ENS_REG_SVMReg Ensemble with SVM as regression meta-learner of 6 BL 75.7 102.2 2.290 

ENS_HEU_Best_BL_Year_Ago Heuristic ensemble, best predictors one year ago 78.2 108.3 2.357 

ENS_REG_MLPerc Ensemble with MLP as regression meta-learner of 6 BL 81.1 107.9 2.446 

ENS_HEU_Best_BL_Week_Ago Heuristic ensemble, best predictors one week ago 83.6 119.6 2.524 

Table 8.3. Performance metrics for potential ensembles forecasting power demand in Ireland for year 2019. Classification-
based meta-learners of ensembles, selected for validation were marked in grey. 

Figure 8.6 depicted base-learners and ensembles performance as a function of the day of the 

week, month, and hour. 
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Figure 8.6. MAPE for predictions for 2019 by base-learners (left column) and ensemble learning models (right column) as 
function of day of the week (top row), month of the years (middle row) and hour of the day (bottom row). 
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Comparison of distributions, forecasted by ensembles and actual power demand, for year 2019 

was presented on Figure 8.7. As power demand was not normally distributed, non-parametric 

Kolmogorov-Smirnov test was used to investigate whether forecasted and actual demand, in pairs, 

were from the same distribution (Table 8.4). 

 
Figure 8.7. Comparison of forecasted by ensembles and actual power demand distributions for Year 2019. 

 

Samples of predictions of below ensembles and actual demand in 2019  

were from the same distributions were from different distributions 

ENS_CLA_MLPercC ENS_REG_ALL_MLPerc 

ENS_CLA_SVMClas ENS_REG_ALL_SVMReg 

ENS_CLA_LogRegC ENS_REG_ALL_LgtGBM 

ENS_CLA_LgtGBMC ENS_REG_ALL_LinReg 

ENS_HEU_Median_of_BL ENS_REG_LgtGBM 

ENS_HEU_Mean_of_BL ENS_REG_LinReg 

ENS_HEU_Best_BL_Day_Ago ENS_REG_SVMReg 

ENS_HEU_Best_BL_Year_Ago ENS_REG_MLPerc 

ENS_HEU_Best_BL_Week_Ago  

Table 8.4. Results of Kolmogorov-Smirnov test for predictions of ensembles and actual power demand in 2019. 

8.7.    One Day-Ahead Power Demand Forecasting in Ireland for Year 2019 

To visualise the potential of ensemble learning models in ODADF in Ireland, time series of 

predictions by the best ensembles, such as classification-based ensemble with MLP and SVM as meta-

learners were compared to the prediction of the best base-learner CNN (SD) and real power demand 

in Ireland in 2019 on Figure 8.8. 
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Figure 8.8. One day-ahead power demand forecasting for year 2019 using best base-learner two best ensembles. Holidays 
on weekdays are marked in pink. 
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8.8.    Discussion Regarding Results of the Experimentation with Architectures of Ensembles 

Experimentation with meta-learners of ensembles revealed their more consistent performance 

compared to standalone base-learners. For example, MAE, RMSE and MAPE varies 64.1-83.6MW, 

89.1-119.6MW, and 1.92-2.52%, respectively. Regression-based ensembles that integrated twenty 

base-learner predictions exhibited superior performance compared to those restricted to a limited 

number of predictions. This suggested that ensemble models possess the capability to effectively 

handle and manage their input. 

All classification-based ensembles outperformed other meta-learners and best base-learners. 

Ensemble of twenty base-learners, with MLP classifier as meta-learner, achieved the lowest MAPE 

1.92%, which was 17.2% improvement in comparison to the best base-learner, CNN (SD) MAPE 2.32%.   

Ensemble models utilizing SVM, Logistic Regression, and GBM as meta-learners closely trailed 

the leading model, registering MAPE scores of 1.96%, 1.96%, and 1.99%, respectively. Three other 

ensembles - two heuristic rule-based ones using median and mean, and a regression-based ensemble 

with MLP regressor incorporating twenty base-learner predictions - also surpassed the performance 

of the best base-learner. Nevertheless, other ensembles did not achieve this benchmark. Even so, the 

ensemble with the lowest performance recorded MAPE of 2.52%, which was not only proximate to 

the best base-learner but is also significantly better than the poorest-performing base-learner, which 

had a MAPE of 3.57%. Interestingly, classification-based ensembles using Logistic Regression and SVM 

as meta-learners performed better with weather factors from the virtual weather station created with 

Linear Regression. Meanwhile, ensembles utilizing GBM and MLP favoured the Lasso Regression. 

Finally, while comparison of predictions by ensembles and actual power demand in 2019 

distributions looked similar visually, inferential statistics tests revealed that, predictions of 

classification and heuristic rule-based models, aligned with the distribution of the actual demand, 

while those of regression-based ensembles models deviated from actual demand distribution. 

8.7.    Conclusion 

The primary research established a cause-and-effect relationship between ensemble 

configurations and ODADF performance metrics. While the performance of ensemble learning models 

was negatively impacted by limiting the number of base-learners' predictions, changing the 

integration approach, while keeping their number constant, had significant influence on the overall 

performance. Therefore, the integration method of base-learners emerged as the primary causal 

variable. 



82 

 

Additionally, the data preparation phase for base-learners was found as important as designing 

the ensembles’ architectures. The introduction of the SD and MW approaches amplified the variety of 

the base-learners' predictions. Subsequently, incorporating diverse base-learners, with varied 

performance across different timeframes, proved successful in ensemble constructions. Ensemble 

systems not only harnessed the combined strengths but also mitigated the potential inconsistencies 

found in individual base-learners. This was evident from the notably reduced performance variations 

among ensembles in comparison to base-learners. The superiority of regression-based ensembles, 

especially those that incorporated the full spectrum of twenty base-learner predictions, indicated the 

adaptability and self-management capabilities of ensemble models. 

Classification-based ensembles, marked significant advancements over other meta-learners and 

leading base-learners. Interestingly, even the lesser-performing ensembles not only approached the 

proficiency of the best base-learner but also outstripped the performance of the least effective base-

learner. Moreover, while half of the base-learner predictions deviated from the distribution of actual 

demand, predictions from classification and heuristic rule-based models aligned with the distribution 

of the actual demand. Furthermore, while ensembles using Logistic Regression and SVM as meta-

learners performed better with weather factors from the virtual weather station created with Linear 

Regression, ensembles utilizing GBM and MLP favoured the Lasso Regression. Finally, performance of 

classification-based ensembles for ODADF in Ireland must be validated on unseen data from years 

2021-2022. 
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9. Validation of the Experimentation’s Results 

Classification-based ensembles, as the best approach revealed in Chapter 8, were refitted and 

tested on unseen data. All base-learners, with hyperparameters tuned on training dataset, were fitted 

on data from year 2021, and validated on data from year 2022. Subsequently, classification meta-

learners, with hyperparameters tuned on training dataset, were fitted on base-learners predictions 

for years 2021-2022, and validated on data from year 2022. 

9.1.    Refitting and Evaluation of Base-Learners 

Evaluation of twenty base-learners of classification-based ensembles, for ODADF in Ireland in 

year 2022, was shown on Figures 9.1-9.6. 

 

 

 
Figure 9.1. Forecast of power demand in Ireland for year 2022 by base-learners (1-3). 
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Figure 9.2. Forecast of power demand in Ireland for year 2022 by base-learners (4-7). 
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Figure 9.3. Forecast of power demand in Ireland for year 2022 by base-learners (8-11). 
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Figure 9.4. Forecast of power demand in Ireland for year 2022 by base-learners (12-15). 
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Figure 9.5. Forecast of power demand in Ireland for year 2022 by base-learners (16-19). 
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Figure 9.6. Forecast of power demand in Ireland for year 2022 by base-learners (20). 

9.2.    Ranking of Base-Learners for Year 2022 

Ranking of the twenty base-learners as function of day, month, and hour, based on MAPE for 

ODADF in Ireland in year 2019 was shown on Figure 9.7. 

 

Figure 9.7. Ranking of 20 base-learners as function of day, month and hour, based on MAPE for year 2022. 
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Comparison of distributions, forecasted by base-learners and actual power demand, for year 

2022 was shown on Figure 9.8. Non-parametric Kolmogorov-Smirnov test was used to investigate 

whether forecasted and actual demand, in pairs, were from the same distribution (Table 9.2). 

 
Figure 9.8. Comparison of forecasted by base-learners and actual power demand distributions for Year 2022. 

 

Samples of predictions of below base-learners and actual demand in 2022  

were from the same distributions were from different distributions 

SD_LR_1_52_Weeks_Ago SD_F_CNN 

MW_35D_F_SVMReg SD_F_LSTM 

MW_LR_36_Days_Window SD_F_LgtGBM 

MW_35D_F_LinReg SD_F_LinReg 

MW_LR_14_Days_Window SD_F_RidgeR 

MW_LR_7_Days_Window SD_F_SVMReg 

SD_LR_1_Week_Ago MW_35D_F_LgtGBM 

 SD_F_LassoR 

 MW_35D_F_RidgeR 

 SD_F_MLPerc 

 SD_LR_52_Weeks_Ago 

 MW_35D_F_LassoR 

 MW_35D_F_MLPerc 

Table 9.2. Results of Kolmogorov-Smirnov test for predictions of base-learners and actual power demand in 2022. 

9.3.    Percentage Share of Base-Learners in the Best Hourly Predictions for Year 2022 

The percentage share of base-learners in the best hourly prediction was shown by year (Figure 

9.9), and by day type (Figure 9.10). 

 
Figure 9.9. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by year. 
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Figure 9.10. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by day type. 

9.4.    Refitting and Evaluation of Classification-Based Ensembles 

Evaluation of classification-based ensembles, for ODADF in Ireland in year 2022, was shown on 

Figures 9.11-9.12. 

 

 
Figure 9.11. Forecast of power demand in Ireland for year 2022 by classification-based ensembles (1-2). 
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Figure 9.12. Forecast of power demand in Ireland for year 2022 by classification-based ensembles (3-4). 

9.5.    Validation Ranking of Base-learners and Classification-Based Ensembles for Year 2022 

Ranking of base-learners and ensembles from Sections 9.1-9.4, based on average MAPE for 

ODADF in Ireland in year 2022, was shown on Figure 9.13. More performance metrics achieved by the 

best twenty ensembles and base-learners were presented in Table 9.3. The classification-based 

ensembles were the winners of the study, again. 

 

Figure 9.13. Ranking of base-learners and ensembles based on average MAPE for one day-ahead power demand in year 
2022 in Ireland. 
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Model 
PERFORMANCE METRICS FOR YEAR 2022 

MAE in MW RMSE in MW MAPE in % 

ENS_CLA_SVMClas 70.3 100.3 1.911 

ENS_CLA_MLPercC 70.5 99.9 1.914 

ENS_CLA_LogRegC 73.9 105.8 2.006 

ENS_CLA_LgtGBMC 74.0 105.5 2.009 

MW_35D_F_SVMReg 79.0 117.1 2.152 

MW_35D_F_LinReg 78.9 115.7 2.159 

MW_LR_36_Days_Window 80.2 116.9 2.191 

MW_LR_14_Days_Window 82.4 121.2 2.244 

MW_35D_F_LgtGBM 85.6 124.3 2.306 

MW_35D_F_RidgeR 85.1 119.5 2.324 

SD_LR_1_52_Weeks_Ago 85.5 117.6 2.335 

MW_LR_7_Days_Window 92.0 134.0 2.511 

SD_F_SVMReg 100.1 138.2 2.774 

MW_35D_F_LassoR 103.7 150.7 2.813 

SD_F_LassoR 103.9 136.7 2.888 

SD_F_LinReg 106.4 139.4 2.959 

SD_F_RidgeR 106.4 139.4 2.959 

SD_F_LgtGBM 109.9 143.5 3.003 

SD_LR_52_Weeks_Ago 116.3 162.5 3.123 

SD_F_MLPerc 116.4 152.5 3.176 

SD_LR_1_Week_Ago 119.5 196.9 3.228 

MW_35D_F_MLPerc 155.7 192.6 4.327 

SD_F_LSTM 169.1 205.8 4.701 

SD_F_CNN 173.1 205.6 4.831 

Table 9.3. Performance metrics for twenty best base-learners and classification-based ensembles forecasting power 
demand in Ireland for year 2022. Classification-based ensembles, selected for validation, were marked in grey. 

Figure 9.14 depicted base-learners and classification-based ensembles’ performance as a 

function of the day of the week, month, and hour. 
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Figure 9.14. MAPE for predictions for 2022 by base-learners (left column) and ensemble learning models (right column) as 
function of day of the week (top row), month of the years (middle row) and hour of the day (bottom row). 
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Comparison of distributions, forecasted by ensembles and actual power demand, for year 2022 

was shown on Figure 9.15. Non-parametric Kolmogorov-Smirnov test was used to investigate whether 

forecasted and actual demand, in pairs, were from the same distribution (Table 9.4). 

 
Figure 9.15. Comparison of forecasted by ensembles and actual power demand distributions for Year 2019. 

 

Samples from predictions of below ensembles and actual demand in 2019  

were from the same distributions were from different distributions 

ENS_CLA_MLPercC ENS_CLA_LogRegC 

ENS_CLA_SVMClas ENS_CLA_LgtGBMC 

Table 9.4. Results of Kolmogorov-Smirnov test for predictions of ensembles and actual power demand in 2022. 

9.6.    One Day-Ahead Forecasting of Power Demand in Ireland for Year 2022 

To visualise the potential of ensemble learning models in ODADF in Ireland, time series of 

predictions by the best ensembles, such as classification-based ensemble with MLP and SVM as meta-

learners were compared to the prediction of the best base-learner SVM (MW) and real power demand 

in Ireland in 2022 on Figure 9.16. 
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Figure 9.16. One day-ahead power demand forecasting for year 2019 using best base-learner two best ensembles. Holidays 
on weekdays were marked in pink. 
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9.7.    Discussion Regarding Validation of Experimentation Results 

The validation of experimentation with classification-based ensembles verified that they 

exhibited notably less performance variation compared to base-learners. For example, MAE, RMSE 

and MAPE varied 70.3-74.0MW, 100.3-105.5MW, and 1.91-2.01%, respectively. For comparison, MAE, 

RMSE and MAPE for twenty base-learners varied 79.0-173.1MW, 117.1-205.6MW, and 2.15-4.83%, 

respectively. 

All classification-based ensembles outperformed the best base-learner. Ensembles of twenty 

base-learners, with SVM and MLP classifiers as meta-learner, achieved the lowest MAPE 1.91%, which 

was 11.2% improvement in comparison to the best base-learner, SVM (SD) MAPE 2.15%. Ensemble 

models utilizing Logistic Regression, and GBM as meta-learners closely trailed the leading model, 

registering MAPE scores of 2.01%.  

Finally, while comparison of predictions by ensembles and actual power demand in 2019 

distributions looked similar visually, inferential statistics tests revealed that, predictions of two 

winning classification-based models, utilising MLP and SVM as meta-learners, aligned with the 

distribution of the actual demand, and those utilising Logistic Regression and GBM as meta-learners, 

deviated from the distribution of actual demand. 

9.8.    Conclusion 

The efficacy of classification-based ensembles, which integrated a variety of diverse base-

learners, was validated on previously unseen data. Ensembles not only harnessed the combined 

strengths but also mitigated the potential inconsistencies found in individual base-learners. 

Furthermore, while predictions of 65% base-learners deviated from the distribution of actual demand, 

predictions of classification-based models, utilising MLP and SVM as meta-learners, aligned with the 

distribution of the actual demand. That underscored the value of leveraging a variety of models when 

constructing ensemble systems, which led to more robust and accurate ensemble predictions. 

Finally, classification-based ensembles stood out as the most effective solution in ODADF. 

Specifically, these models employed meta-learners like MLP and SVM. Their role was two-fold: 

• predicting which base-learners were likely the best predictors based on factors like the day of 
the week, holiday on weekday, day of the year, hour, and lagged by 39-hours weather factors, 

• providing ensemble predictions by multiplying the probabilities of base-learners with their 
respective forecasts.  
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10. Research Conclusion: Summary, Limitations, and Recommendations 

Introduction and literature review were covered in Chapters 1-2, respectively. Chapters 3-6 

covered the preparation phase. Experimentations with base-learners and meta-learners of ensembles 

were covered in Chapters 7-8, respectively, followed by validation of the results in Chapter 9. 

In Chapter 1, accurate One Day-Ahead Demand Forecasting (ODADF) was found crucial for 

electrical network reliability, the environment, and trading markets. Problem with achieving accurate 

predictions by individual models, as well as possible solution, the use of ensembles, had been both 

identified. Finally, the research objectives were formed, to develop a framework of ensemble learning 

models, evaluate their performance, and examine their potential for ODADF in Ireland. 

In Chapter 2, comprehensive overview of the state-of-the-art methodologies to Short-Term Load 

Forecasting (STLF), revealed gap in the knowledge which needs to be filled. No research, examining 

implementation of ensemble learning models, either to ODADF or STLF in Ireland, was found. 

Nevertheless, strengths and weaknesses of single and hybrid models, reported in papers, were 

invaluable in guiding the selection of base-learners and integration methods to develop ensemble 

learning framework. Furthermore, the significance of incorporating historical demand, calendar data, 

weather variables and their encoding, informed the development and implementation of the 

framework. Moreover, insights gleaned from real-world applications as well as challenges and 

limitations in the field, informed the experimental design for this research. 

In Chapter 3, the methodology framework of research was developed, and CRISP-DM, adapted 

to requirements of the research, was selected as project management framework. Experimentation 

was selected as primary research methodology, and the population of interest, sampling method and 

type, as well as quantitative research approach were identified as appropriate. The development of 

ensembles’ framework considered a balance between performance and computational complexity of 

the configurations. Three stacking approaches were considered, such as classifiers and regressors as 

meta-learners, and heuristic rules. A variety of machine and deep learning regressors for potential 

base-learners was considered. Moreover, two methods of supervised problem creation, based on 

Similar Day (SD) and Moving Window (MW) approaches, were proposed to increase the ability of base-

learners to find various patterns in data. To evaluate the performance of ensembles by comparing 

their metrics, strict experimentation setting was established, where all models were trained and 

evaluated under the same conditions. To examine the potential of ensembles to ODADF in Ireland, 

ensembles and base-learners, were compared using various performance metrics as a function of day 

type, month and hour. Testing the best solutions on unseen data, and performing inferential statistical 
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tests, were used to validate the results. Bayesian optimisation with 10-fold cross-validation was 

selected for hyperparameters tuning. Project management section covered detailed descriptions of 

all steps performed in the thesis. Finally, limitations and ethical considerations were described.  

In Chapter 4, sources and selection of datasets were identified, and raw data for power demand 

and weather factors was collected. Initial Exploratory Data Exploration (EDA) detected Daylight-Saving 

Time (DST) distortions, missing values and outliers in time series. Extraction of day of the week, 

holidays occurring on weekdays, day of the year, and hour, enhanced the data by temporal features. 

Finally, temperature, relative humidity and wind speed were selected as exogenous variables, and 

data was trimmed to cover years 2014-2022. 

In Chapter 5, power demand data preparation for modelling was performed, including DST 

distortion removal, and replacement of missing data and outliers. New data was validated by 

performance metrics, visual comparison to SDs from neighbouring weeks, and distributions before 

and after the cleaning process. EDA, including descriptive and inferential statistics, revealed patterns, 

trends and seasonality in power demand, which were seriously disrupted by Covid-19 lockdown 

restrictions in Ireland in 2020. Subsequently, baseline models were examined on data from year 2019, 

as starting point and reference for comparison with more complex models. Investigations into weekly 

and daily lags, and window size were performed for SD and MW approaches, respectively. Scaling of 

power demand, and encoding of temporal features to cyclical and sparse vector formats, were found 

valid and beneficial to ODADF in Ireland by correlation study. Finally, supervised learning problems 

were defined separately for SD and MW approaches. 

In Chapter 6, multivariate data preparation for modelling was performed, including DST 

distortion removal from weather factors, and investigation into correlation between lagged weather 

variables and power demand. Temperature, relative humidity and wind speed, lagged by 39-hours 

were selected as potential weather features. As weather data was distributed locally, three 

approaches to find representative stations were proposed, such as virtual weather stations created 

by Linear and Lasso Regression, as well as the most important real one. Weather factors were scaled 

and results were validated by correlation study and distributions comparison. Investigation into 

feature importance was performed to select the best ones, considering all three representative 

weather stations, utilising various methods, separately for SD and MW approaches. Finally, supervised 

learning datasets, utilising selected features, were created for SD and MW approaches, employing 

weather factors created with Linear and Lasso Regression, respectively. Given that data from year 

2020 was found to be indeed an outlier, datasets were split primarily into training and testing sets, 

covering years 2014-2019, and 2021-2022, respectively.  
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In Chapter 7, experimentation with wide range of potential base-learners was performed. 

Training datasets were further split into training and validation subsets, covering years 2014-2018, 

and 2019, respectively. Then, Bayesian optimisation with 10-fold cross-validation was used for base-

learners hyperparameters tuning, and predictions were made for years 2015-2019. Potential base-

learners were evaluated on year 2019, and the twenty most promising ones were selected as base-

learners. Both, similar day-based and moving window-based models found their place in the selection. 

All base-learners showed fluctuations in their MAPE across different days of the week, months and 

hours. That variability was found potentially beneficial for ensemble learning models. 

In Chapter 8, experimentation with three potential integration methods, identified in Chapter 3, 

was performed, incorporating predictions of twenty base-learners from Chapter 7 as training data for 

the ensembles. Heuristic rule-based ensembles were used as the baseline models. Bayesian 

optimisation with 10-fold cross-validation was used for hyperparameters tuning of classifiers and 

regressors as meta-learners, and predictions by ensembles were made for years 2015-2019. Potential 

ensembles were evaluated on year 2019, and classification-based ensemble learning models, as the 

winners of study, were selected for further investigation. 

The experimentation phase established a cause-and-effect relationship between ensemble 

configurations and performance metrics of ODADF in Ireland. Firstly, limiting the number of base-

learners adversely affected ensembles’ performance, which highlighted the capability of ensembles 

to effectively handle and manage their input. Concurrently, while keeping the same number of base-

learner predictions as an independent variable, changing the integration approach had significant 

influence on their overall performance. As a result, the integration method emerged as the primary 

causal variable. Additionally, the importance of the data preparation phase was on par with that of 

designing the ensemble architectures. The introduction of SD and MW approaches amplified the 

diversity of the base-learners' predictions. This enhanced diversity underscored the benefits of 

incorporating a varied range of base-learners, ultimately benefiting the performance of ensemble 

systems for ODADF in Ireland. 

Ensemble learning models not only harnessed the combined strengths but also mitigated the 

potential inconsistencies found in individual base-learners. Even the lesser-performing ensembles not 

only approached the proficiency of the best base-learners but also outstripped the performance of 

the least effective base-learner. Additionally, incorporating virtual representative weather stations 

was found beneficial to performance of classification-based ensemble learning models. While 

ensembles using Logistic Regression and SVM as meta-learners performed better with weather factors 

from the virtual weather station created with Linear Regression, those ones, which utilized GBM and 
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MLP favoured the Lasso Regression. Interestingly, those two virtual weather stations were favoured 

over the most important real weather station in Mount Dillon both, by SD and MW base-learners, as 

well as by meta-learners of classification-based ensembles. That proves the benefit of their 

introduction to this research. Moreover, while half of the base-learners predictions deviated from the 

distribution of actual demand, predictions of classification-based and heuristic rule-based models 

aligned with the distribution of the actual demand. That underscored the value of leveraging a variety 

of models when constructing ensemble systems, which led to their more robust and accurate 

predictions. 

In Chapter 9, validation of experimentation results was performed. Testing datasets were further 

split into training and validation subsets, covering years 2021 and 2022, respectively. Then, the twenty 

base-learners, with hyperparameters inferred from Chapter 7 were refitted and evaluated on unseen 

data from years 2021-2022, respectively. Subsequently, classification-based meta-learners, with 

hyperparameters inferred from Chapter 8 were refitted and evaluated on the base-learners’ 

predictions and data for year 2022, respectively. 

The results proved the high potential of classification-based ensembles for ODADF in Ireland. 

Ensembles of twenty base-learners, with SVM and MLP classifiers as meta-learners, achieved the 

lowest MAPE 1.91%, which was 11.2% improvement in comparison to the best base-learner, SVM (SD) 

registering MAPE 2.15%. Furthermore, while predictions of 65% base-learners deviated from the 

distribution of actual demand, predictions of above ensembles aligned with the distribution of the 

actual demand. Therefore, classification-based ensembles with SVM and MLP classifiers as meta-

learners stood out as the most effective solution for ODADF, and their high potential was revealed, 

recognised and validated on unseen data. 

All research objectives were fully addressed in the thesis. The framework of ensemble learning 

models for ODADF in Ireland was developed in Chapters 3, 7-8. Following experimentation with 

selected architectures of ensemble learning models, their performance was evaluated by comparing 

their metrics, and the cause-and-effect relationship between architecture of ensembles and ODADF 

performance was established in Chapters 7-8. Finally, the potential of classification-based ensemble 

learning application to ODADF in Ireland was revealed and validated in Chapters 8-9, respectively. 

While this research addressed the gap in knowledge, identified in Chapter 2, demonstrating the 

potential of ensemble learning models for ODADF in Ireland, further work is needed to 

comprehensively bridge this gap. Given that the project was conducted with the use of personal 

computer and within twelve weeks period, limitations in architecture of the ensembles were 
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recognised and accepted, with the aim to develop a balanced ensemble model, where potential 

benefit in accuracy was weighted against computational effort and complex model building. 

Therefore, DL was not incorporated for MW approach, and Bayesian optimisation of hyperparameters 

tuning was restricted to twenty trials. Besides, hybrid models were not considered as base-learners. 

Moreover, early-stopping was not integrated into the MLP, LSTM, and CNN models because it was 

found incompatible with Bayesian optimisation, causing early-stopped trials to fail. Nevertheless, the 

number of epochs was set as a hyperparameter to be optimised. Furthermore, while heuristic rule, 

classifiers and regressors from stacking integration methods were examined in this research, bagging 

and boosting ensembles were not explored due to time-constraints. Lastly, although feature selection 

was conducted separately for the SD and MW approaches using a variety of methods, the final decision 

was based on the performance of the LR model, and applied to all other models. 

Future research could be performed to evaluate the potential of using wider variety of base-

learners for stacking meta-learners, as well as other integration methods for ODADF in Ireland. Firstly, 

it would be recommended to evaluate DL models for MW approach, and increase the number of trials 

in Bayesian optimisation from twenty to at least one-hundred. Secondly, inclusion of hybrid models 

could enhance the variety of base-learners. Thirdly, integration of early-stopping into Bayesian 

optimisation could reduce the time needed for hyperparameters tuning. Lastly, conducting feature 

selection individually for each model could enhance the performance of both base-learners and 

ensemble learning models.  
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