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Abstract

Accurate One Day-Ahead Demand Forecasting (ODADF) is crucial for electrical network reliability,
the environment, and trading markets. While individual models face challenges in achieving accurate
predictions, ensemble learning models have emerged as potential solution. They have achieved
success in ODADF in several countries; however, there has been no research conducted for the Irish
power system. Therefore, research objectives were formed, to develop a framework of ensemble
learning models, evaluate their performance, and examine their potential for ODADF in Ireland, to fill
the gap. Experimentation, and CRISP-DM were selected as primary research methodology, and project
management framework, respectively. The development of the framework considered a balance
between performance and computational complexity of the configurations. Three stacking
approaches were considered, such as classifiers and regressors as meta-learners, and heuristic rules.
Various potential base-learners were considered, and two methods of supervised problem creation,
based on Similar Day (SD) and Moving Window (MW) approaches, were proposed to enhance their
pattern recognition in data. The cause-and-effect relationship between ensemble configurations and
performance metrics for ODADF in Ireland was established, and the integration method emerged as
the primary causal variable.

The research methodology was divided into three phases, such as data preparation,
experimentation with ensembles architectures, and validation of results. Data preparation included
temporal features extraction, Daylight-Saving Time removal, and replacement of missing data and
outliers. The results were validated by performance metrics, visual comparison to SDs from
neighbouring weeks, and distributions before and after the processing. Investigations into lagged
weekly and daily demand, and window size were performed for SD and MW approaches, respectively.
Following investigation into correlation between lagged weather variables and demand; temperature,
relative humidity and wind speed, lagged by 39-hours were selected as exogenous features. As
weather data was distributed locally, three approaches for representative stations were proposed.
Scaling of time series, and encoding of temporal features to cyclical and vector formats, were found
beneficial to ODADF by correlation study and distributions comparison. Feature selection was
performed separately for SD and MW approaches. Given that data from year 2020 was found to be an
outlier, datasets were split primarily into training and testing datasets, covering years 2014-2019, and
2021-2022, respectively. Experimentation with base-learners and three integration methods was
performed. Training and testing datasets were further split into training and validation subsets,
covering years 2014-2018 and 2019, and 2021-2022, respectively. Bayesian optimisation with 10-fold
cross-validation was selected for hyperparameters tuning. Potential base-learners were tuned, trained
and evaluated on training datasets, and the twenty most promising ones were selected as base-
learners. They showed fluctuations in their MAPE across different days of the week, months and hours.
Potential ensembles were tuned, trained and evaluated on base-learners’ predictions for years 2015-
2019 and training datasets, respectively. In the validation phase, base-learners and classification-
based ensembles with hyperparameters inferred from previous phase, were refitted on unseen data,
and the base-learners’ predictions for years 2021-2022, respectively, and evaluated on year 2022.

The results proved the high potential of classification-based ensembles for ODADF in Ireland.
Ensembles of twenty base-learners, with SVM and MLP classifiers as meta-learners, stood out as the
most effective solution for ODADF in Ireland. They both achieved the lowest MAPE 1.91%, which was
11.2% improvement in comparison to the best base-learner, SVM (SD) registering MAPE 2.15%. While
introduction of SD and MW approaches amplified the diversity of the base-learners’ predictions,
incorporating virtual weather stations benefited the performance of classification-based ensembles.
They not only harnessed the combined strengths but also mitigated the potential inconsistencies
found in individual base-learners, achieving predictions aligned with the distribution of actual
demand. Finally, while this research addressed the gap in knowledge, further work, using wider variety
of base-learners and their integration methods, is needed to comprehensively bridge this gap.

GitHub: https://github.com/karol-skowronski/Capstone Wordcount: 17,383
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1. Introduction

1.1. Background

Short-Time Load Forecasting (STLF) refers to the prediction of power demand within a relatively
short time horizon, typically spanning hours to a few days ahead. One Day-Ahead Demand Forecasting
(ODADF) is a particular case of STLF, where the hourly mean of power system demand is predicted for
the following day. Accurate ODADF is crucial for electrical network reliability, the environment, and
trading markets. Instantaneous balance, between generation and demand of electricity, must be
maintained by system operators at all times. This is the responsibility of the EirGrid in the Republic of
Ireland, who operates the electricity grid, including interconnection to neighbouring grids, and running
the wholesale electricity market. Implications of imbalance are negative, both technically and
financially. Many state-of-the-art models struggle to achieve accurate predictions in the constantly
changing conditions, in which the power system operates. The growth in weather-dependent
renewable sources (RES), coupled with climate change, the advent of contemporary appliances, and
changes in customer habits, challenge the system operation. While the work of conventional power
plants can be controlled at system level, RESs are solely dependent on weather conditions. Moreover,
low-scale RES generation, connected to the grid at distribution level, while being outside of the system
operator’s control, decreases customer power demand from the grid. Furthermore, the increasing
number of electric vehicles, combined with changes in customer habits due to remote working, alters

the demand patterns.

The dynamic conditions of power system operations challenge many state-of-the-art STLF
methods, ODADF in particular (Table 1.1). Traditional models are unable to capture non-linear
patterns, and are sensitive to initial conditions, outliers and abrupt changes in data. Auto-regressive
models assume linear relationship between past and future observations, require stationary time
series, and cannot capture sudden changes in patterns. Machine learning models suffer from system
depended phenomenon, lack of interpretation, and require challenging selection of appropriate
features and hyperparameters. Deep learning models require selection of appropriate architecture,
hyperparameters, and training strategies, which is challenging and significantly impacts their
performance. They have higher standard deviation of accuracy and sensitivity to reduction of training
data compared to machine learning models. Moreover, they require large amount of training data and
high computational resources. Hybrid models require complex process of selecting and integrating
individual models to attain efficiency. Moreover, determining optimal combination of weights or rules
of integration requires careful experimentation and validation, and hyperparameter tuning is

complex. They need more data and are more computationally expensive than their components.



Dataset Reported Results s
Authors (year) (size) Model Metric | Value Limitations
Sethi and Kleiss us Unable to capture non-linear patterns.
0,
(2020) (1 year) HWES MAPE 4.60% Need careful selection of parameters.
Metropolitan Sensitive to initial conditions, outliers
Shahare et al (2023) Area SES MAE 1.400 o)
(5 years) and abrupt changes in data.
Dudek (2015) Poland 2.42% Assumes linear relationship t.)etween
(2 years) ARIMA past and future observations.
Al-Musaylh et al Australia MAPE 2.16% Require stationary time series
(2018) (5 years) o q v '
Sethi and Kleissl us ARIMA 3.80% Unable to capture sudden changes
(2020) (1 year) SARIMA 3.20% in patterns in data.
Dudek (2015) Poland MLR 2.81% Long training time.
(2 years)
Tsekouras, Kanellos . s
and Mastorakis Greece MLP 1.78% Not possible to generalise findings
(2015) (1-7 years) due to system depended phenomenon.
Al-Musaylh et al Australia MARS 1.27% Increased memory requirements
(2018) (5 years) SVR 1.71% yreq
N. Ireland 2.53% Challenging selection of appropriate
F 202 MAPE
oster (2020) (7 years) MLR 2.62% features and hyperparameters,
New York MLP 4.34% which significantly impacts
Foster (2020) (6 years) 3.71% model performance.
Kathirgamanathan New England MLP 4.14% High computational complexity
et al (2022) (6 years) R of SVR and MLP models.
Poland SVR 2.17% Difficult to understand
Osowski et al (2022) (6 years) MLP 2.08% underlying relationship between
y RBF 2.26% the input features and predicted values.
M. Area SVR 0.088 .
Shahare et al (2023) (5 years) MLP MAE 0.079 Increased memory requirements.
hi NN .309
Han et al (2019) China ¢ 3.30% Sensitive to reduction of data
(4 years) LSTM 2.70%
Sethi and Kleiss| s compared to MLP models,
(2020) (1 year) LSTM 2.10% with LSTM being most affected.
o - -
Foster (2020) N. Ireland 3.65% Challengmg seIeFtlon
(7 years) LSTM 3.02% of appropriate architecture,
New York CNN MAPE 4.12% hyperparamete.rs,.a.nd tral.nlng strategies,
Foster (2020) (6 years) 3.71% which significantly impacts
. (1]
their performance.
Osowski et al (2022) Poland LSTM 1.63% Reqwrg large amoun.t of training data
(6 years) and high computational resources
Kathigamanathan New England CNN 3.91% ;';gdhsset::i?i?/:'?yizvrlztt:’;s:tic:)fnasﬁl:i;at:y
o §
etal (2022) (6 years) LSTM 3.89% with LSTM being most affected.
Dudek (2015) Poland LR+DT 253% Challenging selection and integration
(2 years) el of individual models.
Poland 1.34% Determining optimal combination
Dudek (2016) (4 years) SD+PCR MAPE 1.35% of weights or rules of integration
Dudek (2016) Australia SD+PLSR 2.83% requires careful experimentation
(4 years) 3.00% and validation.
He (2017) China 1.41% Complex hyperparameter tuning.
(3 years) CNN+LSTM it Computationally expensive.
Shahare et al (2023) M. Area MAE 0.029 Interpretation more challenging
(5 years) ) than their components.

Table 1.1. Summary of recent research in one day-ahead power demand forecasting by traditional, auto-regressive,

machine learning, deep learning and hybrid models, published after year 2014.

The decreased accuracy of ODADF negatively impacts system reliability, the environment, and

translates to financial losses of system operators. Their customers, however, are interested in clean
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energy, delivered to their premises uninterruptedly, and at low cost. The most promising solution to
increase ODADF accuracy is to use an ensemble of individual predictors. Motivated by the importance
and currency of the problem, as well as the gap in the research for Ireland, by doing this project | hope
to establish, that an optimal ensemble learning approach can not only be successfully applied for
ODADF in Ireland, but also combine the strengths, and offset the limitations of both, single and hybrid
models. Fortunately, ensemble learning has been applied successfully to increase performance of
forecasting in many areas. Moreover, that approach has already been proven to work for STLF and
ODADF in several countries. However, there is no research in that area for the power system in Ireland.

Hence, there is an opportunity for this research to fill that gap.

1.2. Research Objectives

The primary aim of this research is to experiment with ensemble learning models’ architectures

in order to evaluate their potential to ODADF in Ireland. Therefore, the research objectives are:

¢ To develop a framework of ensemble learning models for ODADF in Ireland. This includes pre-
selection of variety of machine and deep learning models, including those able to incorporate
temporal and weather factors, by evaluating their performance, and comparing their metrics.
Subsequently, a framework of ensemble learning models that combines predictions of preselected
base-learners and their integrations techniques will be developed for ODADF in Ireland. The

framework will provide a foundation for the primary research.

¢ To examine the performance of ensembles to ODADF in Ireland by comparing their metrics. This
includes experimentation with selected architectures of ensemble models and measurement of
influence of their configuration to ODADF performance metrics. Each configuration will be trained,
validated and tested using real-world data, and its performance metrics will be automatically recorded
as function of day of the week, month and hour. The performance dataset will enable the examination
of cause-and-effect relationships between variables and allow further examination of the potential in

ensemble learning architectures to ODADF in Ireland.

¢ To evaluate the potential of ensemble learning application to ODADF in Ireland. This includes
evaluation of performance metrics of ensemble learning models against each other and their base-
learners, which will enable the examination of their potential to ODADF in Ireland. Subsequently,
based on findings of the research, the most optimal ensemble learning architectures will be
determined and validated on unseen data. Finally, limitation of the research and recommendations

for future research and development will be provided.



1.3. Outline of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents an overview of the
literature. Chapter 3 covers methodology, including project management framework, limitations and
ethical considerations of this research. Chapter 4 describes power demand and weather factors data
collection, initial data extraction, exploration, and detection of distortions, missing values and outliers
in time series. Chapter 5 covers power demand data preparation, including temporal features
extraction, daylight-saving time distortion removal, missing data and outliers’ replacement,
exploratory data analysis, followed by definition of supervised learning problems from time series,
using similar day and moving window approaches. Chapter 6 presents multivariate exploratory data
analysis, correlations between lagged weather variables and power demand, finding representative
weather stations, feature selection, followed by supervised learning problems creation. Chapters 7-9
present results of experimentation, including base-learners modelling and evaluation in Chapter 7,
modelling and evaluation of various ensembles in Chapter 8, and validation of classification-based
ensembles’ potential to ODADF in Ireland in Chapter 9. Chapter 10 concludes the thesis by

summarising the research and its limitations, and providing recommendations for future investigation.



2. Literature Review

One Day-Ahead Demand Forecasting (ODADF) is the most prominent application of data analytics
in the electricity sector, crucial for system reliability and trading markets (Scheidt et al., 2020).
Instantaneous balance between supply and demand of electricity must be maintained by power
system operators at all time (Hong and Fan, 2016). Implications of imbalance are negative both
technically and financially. While overestimation leads to starting excessive number of generators,
underestimation forces purchasing energy abroad at higher price (Foster, 2020). Therefore, accurate
ODADEF is essential to support the decision making processes of market participants and system
operators, especially in the relatively small and isolated system with increasing penetration of

Renewable Energy Sources (RES) in Ireland (EirGrid Group, 2022).

Researchers have been working to improve the accuracy of both STLF and ODADF, and so far,
invented many state-of-the-art methods (Ahmad et al., 2022). Nevertheless, the conditions of power
system operation are constantly changing. Main factors, such as growth in weather-dependant RES,
new technologies used by customers, climate change, and changes in customer habits, challenge the
system operation. Hence, existing models have been found to struggle achieving accurate predictions
in the new reality (Foster, 2020). In recent years, approaches based on statistical, machine and deep
learning algorithms have been very popular in that task (Osowski et al., 2022). There is an ongoing
debate on superiority of one method over another. The most promising solution, however, is to
combine individual solutions into an ensemble of predictors. The following literature review aims to
identify the most promising models to serve as base-learners for ODADF in Ireland, highlighting their
benefits and limitations. Moreover, it seeks to determine exogenous factors affecting the demand. To
achieve the aim, it was divided into five main sections as follows: single and complex models in STLF,
forecasting competitions, issues with comparison of findings, and conclusion. To assess the
performance of various forecasting models, Mean Average Percentage Error (MAPE) is used as the

evaluation metric, as it has been widely accepted in the literature (Hyndman and Koehler, 2006).

2.1. Single Models in Short-Term Demand Forecasting

The first section of the literature review explored the main single methodologies developed and

applied to STLF, including traditional, autoregressive, machine and deep learning models.

2.1.1.  From Naive, through Moving Average to Exponential Smoothing Models

The naive forecast is the simplest method, where the future values repeat the last observation.

Therefore, ignoring any patterns in time series, it produces horizontal line. To overcome pure



memorisation, Moving Average (MA) takes the mean on the latest number of steps as the forecast. A
Seasonal (S) naive model looks back a number of steps for each forecast, blindly mimicking the last
seasonal cycle. Exponential Smoothing (ETS) combines intuition of naive models, adding weighted
average, where the weights decrease exponentially with the distance into the history. The most known
are three models: Single (SES), Double (DES) and Holt-Winters Exponential Smoothing (HWES). They

have been widely used for time series forecasting since 1950s (Joseph, 2022).

For example, Taylor and McSharry (2007) used HWES to half-hourly ODADF for twenty-one
european countries, based on years 1988-1993, split 5:1, achieving MAPE 2.40%. Study by Sethi and
Kleissl (2020) used HWES to hourly ODADF for US, based on year 2017, split 3:1, achieving MAPE
4.60%. Another study by Shahare et al. (2023) used SES to hourly ODADF for a metropolitan area,
based on years 2017-2021, split 3:1, achieving MAE of 1.40.

Two of above three studies used HWES and reported MAPE, while the other used SES model and
reported MAE for ODADF. Additionally, all studies were carried in different regions and timeframes.
Therefore, it was not possible to compare them directly. Generally, ETS were relatively simple and
computationally efficient algorithms, responsive to recent changes. Despite their ability to capture
trend and seasonality components, they exhibited several limitations. ETS made assumption of
stationarity and was unable to capture complex non-linear patterns in the data. However, STLF
exhibits non-stationary characteristics, such as seasonality and trend, which adversely impacted the
performance of ETS models (Hyndman and Athanasopoulos, 2018). Furthermore, they were sensitive
to initial conditions, outliers, and abrupt changes in the data (Chen and Liu, 1993), and required careful
selection of smoothing parameters (Ord, Koehler and Snyder, 1997). Moreover, ETS simplicity limited

their performance relative to advanced techniques (Al-Musaylh et al., 2018).

2.1.2.  Autoregressive Models

In addition to ETS, family of Auto-Regressive (AR) models stood the test of time and are still one
of the most popular classical methods of forecasting. Their primary advantage was the ability to
capture temporal dependencies within the data. While ETS was modelled around trend and
seasonality, AR models rely on autocorrelation (Joseph, 2022). Three variants of AR are widely used in
STLF. The first one, Auto-Regressive Integrated Moving Average (ARIMA) model, combines AR and
moving average (MA) components with differencing to model non-stationary (Hyndman and
Athanasopoulos, 2018). The AR and MA components capture the dependency between current and
preceding observations, and the observations and a residual error, respectively (Brockwell and Davis,

2002). The integrated (I) component applies differencing to make the time series stationary (Shumway



and Stoffer, 2017). Two other variants are SARIMA and SARIMAX, where ARIMA model is extended by

Seasonal (S) component (Chatfield, 2015), and external factors (X) into the model (Tashman, 2000).

For example, Taylor and McSharry (2007) used AR and ARIMA to half-hourly ODADF for twenty-
one european countries, based on years 1988-1993, split 5:1, achieving MAPE 3.30% and 2.80%,
respectively, which were both worse than the HWES MAPE 2.40% from previous section. Study by
Dudek (2015) used ARIMA to hourly ODADF for Poland, based on two years, split 12:1, achieving MAPE
2.42%. Study by Al-Musaylh et al. (2018) used ARIMA to hourly ODADF for Australia, based on years
2012-2016, split 4:1, achieving MAPE 2.16%. Another study (Sethi and Kleissl, 2020) used ARIMA and
SARIMA to hourly ODADF for US, based on year 2017, split 3:1, achieving MAPE 3.80% and 3.20%,

respectively, both better than HWES MAPE 4.60% from previous section.

Above studies employed AR, ARIMA and SARIMA and reported their MAPE for ODADF in various
regions and timeframes. The results highlighted the context-dependent performance of those models.
Moreover, although ability of SARIMAX to successfully capture temporal dependencies, handling
trends and seasonality, and incorporating exogenous variables in STLF, they had their specific
limitations. They assumed linear relationship between past and future observations (Zhang, 2003),
and required the stationary time series. Moreover, they could not capture sudden changes in patterns
(Enders, 2014). To address above limitations, researchers have proposed various extensions and

modifications to AR models, as well as hybrid approach, combining them with other techniques.

2.1.3. Machine Learning Models

Machine Learning (ML) models gained significant attention due to their ability to capture
complex patterns and non-linear relationships within data, making them suitable for STLF. This
subsection discussed some of the most widely used ML models, including Linear Regression (LR),
Multi-Linear Regression (MLR), Support Vector Regressor (SVR), Decision Trees (DT), k-Nearest
Neighbors (k-NN), and Multi-Layer Perceptron (MLP). SVR can handle nonlinear relationships in data
through the use of kernel functions (Vapnik, 2013). DT recursively split the input data into subsets,
based on feature values, creating a tree-like structure with nodes representing decisions and branches
the outcomes (Quinlan, 2014). The k-NN algorithm is a non-parametric ML method predicting new
instance based on the outputs of its k-nearest neighbours in the training data, considering specific
distance metric (Altman, 1992). MLP, being Artificial Neural Network (ANN) comprise interconnected
neurons organised in layers. They can learn non-linear relationships in data through the process of

adjusting weights and biases during training (Haykin, 2010).



For example, Hinman and Hickey (2009) used twenty-four LR models to hourly ODADF for US,
based on years 2004-2009, split 5:1, achieving MAPE 3.75%, better than HWES MAPE 4.60% (Sethi and
Kleissl, 2020). Study by Hong et al. (2010) used MLR to hourly ODADF for US, based on years 2005-
2008, split 3:1, achieving MAPE 4.56%, similar to HWES MAPE 4.60% (Sethi and Kleissl, 2020). Study
by Fan and Hyndman (2012) used MLR to half-hourly ODADF for Australia, based on years 2004-2009,
split 5:1, achieving MAPE 1.68%, better than ARIMA MAPE 2.16% (Al-Musaylh et al., 2018). Study by
Ceperic, Ceperic and Baric (2013) used SVR to hourly ODADF for New England, based on years 2003-
2006, split 3:1, achieving MAPE 1.31%, and for US, based on years 1988-1992, split 4:1, achieving
MAPE 2.05%. Study by Dudek (2015) used MLR to hourly ODADF for Poland, based on two years, split
12:1, achieving MAPE 2.81%, worse than ARIMA MAPE 2.42%. Study by Tsekouras, Kanellos and
Mastorakis (2015) used MLP to hourly ODADF for Greece, based on years in range from one to seven,
split 9:1, achieving MAPE 1.78%. Researchers claimed that it was not possible to generalise their
findings to other STLF case studies due to every case being distinct. That phenomenon of neural
networks had already been discovered by Lu, Wu and Vemuri (1993) and named as system
dependency. Study by Al-Musaylh et al. (2018) used Multivariate Adaptive Regression Splines (MARS),
and SVR to hourly ODADF for Australia, based on years 2012-2016, split 4:1, achieving MAPE 1.27%
and 1.71%, respectively, both beating ARIMA MAPE 2.16%. Foster (2020) used MLR and MLP to hourly
ODADF for Northern Ireland, based on years 2013-2019, achieving MAPE 2.53% and 2.62%,
respectively; and for New York, based on years 2012-2017, achieving MAPE 4.34% and 3.71%,
respectively. MLP performed worse for Northern Ireland, and better for New York than MLR model.
Study by Kathirgamanathan et al. (2022) used MLP to forecast hourly demand for New England, based
on years 2004-2009, split 5:1, achieving MAPE 4.14%, worse than SVR MAPE 2.05% (Ceperic, Ceperic
and Baric, 2013). Study by Osowski et al. (2022) used seven ML models to hourly ODADF for Poland,
based on years 2014-2019, with split 7:3. The first three models, being SVR with Gaussian kernel, MLP
and Radial Basis Function (RBF) network, achieved MAPE 2.27%, 2.08% and 2.26%, respectively. Those
models were doubled employing autoencoder, a deep neural solution that reduces dimensionality of
input data, achieving MAPE 2.13%, 1.96% and 1.81%, respectively. The seventh model was Self-
Organising Kohonen Network Application (SOKNA), achieving MAPE 2.34%. RBF with autoencoder
achieved the best result. All models outperformed ARIMA MAPE 2.42% (Dudek, 2015). Another study
(Shahare et al., 2023) used SVR and MLP to hourly ODADF in metropolitan area, based on years 2017-
2021, split 3:1, achieving MAE 0.088 and 0.079, respectively, both better than SES MAE 1.40.

Above studies employed various ML algorithms for ODADF for different countries and
timeframes. Despite their ability to capture complex patterns and non-linear relationships in the data

and promising results of ML models in STLF, they had experienced challenges and limitations. One of



the major challenges was the selection of appropriate features and hyperparameters, which
significantly impacted model performance (Zhang, Eddy Patuwo and Y. Hu, 1998). Additionally, it was
difficult to understand the underlying relationship between the input features and predicted values
using SVR and MLP (Vellido, Martin-Guerrero and Lisboa, 2012). Finally, the computational complexity
of SVR and MLP models was high, leading to longer training time and increased memory requirements

(Goodfellow, Bengio and Courville, 2016).

2.1.4. Deep Learning Models

Deep Learning (DL) models have gained significant attention in recent years due to their ability
to learn complex and abstract patterns from large volumes of data. This subsection discussed Long
Short-Term Memory (LSTM) as implementation of Recurrent Neural Network (RNN), and
Convolutional Neural Network (CNN). RNN are type of ANN designed to handle sequential data by
incorporating feedback connections, allowing them to maintain hidden states and capture temporal
dependencies in data (Elman, 1990). LSTM are advanced type of RNN specifically designed to address
the vanishing gradient problem that occurs when training RNN on long sequences (Hochreiter and
Schmidhuber, 1997). CNN are type of ANN designed to primarily handle images, utilising convolutional
layers, reducing the need for manual feature extraction, followed by dense layers (LeCun, Bengio and

Hinton, 2015). Nevertheless, they have been successfully implemented to STLF, ODADF in particular.

For example, Sethi and Kleissl (2020) used LSTM to hourly ODADF for US, based on year 2017,
split 3:1, achieving MAPE 2.10%, better than HWES, ARIMA and SARIMA MAPE 4.60%, 3.80% and
3.20%, respectively. Study by Han et al. (2019) used CNN and LSTM for hourly ODADF in China, based
on years 2014-2017, split 4:1, achieving 3.3% and 2.7%, respectively. Foster (2020) used LSTM and
CNN to hourly ODADF for Northern Ireland, based on years 2013-2019, achieving MAPE 3.65% and
3.02%, respectively, and for New York, based on years 2012-2017, achieving MAPE 4.12% and 3.71%,
respectively. For Northern Ireland, DL performed worse than MLR and better than MLP MAPE 2.53%
and 4.34%, respectively. For New York LSTM performed worse, and CNN performed better than MLR
and equally to MLP MAPE 4.34% and 3.71%, respectively. Study by Osowski et al. (2022) used LSTM to
hourly ODADF for Poland, based on years 2014-2019, split 7:3, achieving MAPE 1.63%, better than all
seven ML models from previous section MAPE from 1.81% to 2.34%. Study by Kathirgamanathan et
al. (2022) used CNN and LSTM to hourly ODADF for New England, based on years 2004-2009, split 5:1,
achieving MAPE 3.91% and 3.89%, respectively. Researchers found that DL models had better accuracy
but higher standard deviation compared to MLP models, with LSTM being the most affected.
Reduction of training data degraded the prediction and increased standard deviation for all models,

with DL being more sensitive than MLP. Another study by Shahare et al. (2023) used LSTM and CNN
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to hourly ODADF for metropolitan area, based on years 2017-2021, split 3:1, achieving MAE 0.051 and
0.067, respectively, better than SES, SVR and MLP MAE 1.40, 0.088 and 0.079, respectively.

Above studies employed LSTM and CNN algorithms to ODADF for different countries and
timeframes. CNN and LSTM performed equally well as MLP but with higher standard deviation, with
LSTM being the most affected and sensitive to reduction in data. Therefore, despite the promising
results of DL models in STLF, they had their challenges and limitations. The major challenge was the
selection of appropriate architecture, hyperparameters, and training strategies, which significantly
impacted their performance (Géron, 2019). Furthermore, DL required large amount of training data
and high computational resources, which might be prohibitive in some applications (Zhang et al.,
2018). Moreover, DL are considered black boxes, making it difficult to interpret the learned

relationship between the input features and predicted values (Chollet, 2021).

2.2. Complex Methodologies in Short-Term Demand Forecasting

All single-method algorithms have their limitations in achieving high accuracy in ODADF.
Nevertheless, there are two solutions to overcome them: hybrids and ensembles, where multiple
single algorithms work together to complement and augment each other. The second section of the

literature review explored those complex methodologies developed and applied to STLF.

2.2.1.  Hybrid Models

Hybrid models typically involve combining two or more different techniques to take advantage
of the strengths of each component while mitigating their weaknesses. Some common hybrid models
involved combining statistical methods with ML or DL techniques, integrating feature selection and

dimensionality reduction techniques with DL, as well as combining different DL models.

For example, Song et al. (2006) used hybrid of Fuzzy LR and ETS to hourly ODADF for South Korea,
based onyear 1996, split 13:1, yielding MAPE 0.97%, 1.31% and 1.50% for spring, summer and autumn
weeks, respectively. Study by Dudek (2015) used hybrid of LR and DT to hourly ODADF for Poland,
based on two years, achieving MAPE 2.53%, better than MLR but worse than ARIMA MAPE 2.81% and
2.42%, respectively. In following study, Dudek (2016) used hybrid of Similar Day (SD) approach and
Principal Component Regression (PCR) or Partial Least Squares Regression (PLSR) for hourly ODADF in
Poland, based on four years, split 3:1, achieving MAPE 1.34% and 1.35%, respectively, outperforming
all previous models built by Dudek for Poland. For Australia, hybrid models achieved MAPE 2.83% and
3.00%, respectively, which were worse than MARS and SVR MAPE 1.27% and 1.71%, respectively (Al-
Musaylh et al., 2018). Study by He (2017) used hybrid CNN-LSTM to hourly ODADF for China, based on
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years 2010-2012, split 10:1, achieving MAPE 1.41%, beating LR and SVR MAPE 2.76% and 1.72%,
respectively. The result was also better than CNN and LSTM MAPE 3.3% and 2.7%, respectively (Han
et al., 2019). Another study by Shahare et al. (2023) used hybrid CNN-LSTM to hourly ODADF for
metropolitan area, based on years 2017-2021, split 3:1, achieving MAE of 0.029, outperforming SES,
SVR, MLP, LSTM and CNN MAE 0.051-1.400.

Above studies employed various hybrid approaches to ODADF. Hybrid models leveraged the
complementary strengths of different forecasting methods, resulting in improved robustness, stability
and prediction accuracy. However, they faced some challenges and limitations. One of the main
challenges was selecting and combining the individual forecasting models effectively. Determining the
optimal combination weights or rules for integrating the forecasts from different models required
careful experimentation and validation. Tuning their parameters was more complex and both data
and computationally expensive than their components. Moreover, interpretation and understanding

of the hybrid model was even more challenging than individual models.

2.2.2. Ensemble Learning Models

Ensemble learning models, being a set of base-learners integrated by bagging, boosting, stacking
or other technique, combine diverse single or complex models’ predictions to create more accurate
and robust forecast, leveraging the strengths of individual models while compensating for their
weaknesses. Bagging, which stands for bootstrap aggregating, is a technique that generates multiple
base models by training them on different subsets of the training data. Boosting iteratively trains base
models on the same dataset but with different sample weights, encouraging the model to focus on
harder examples. Stacking combines the outputs of base-learners using a meta-learner. The base-
learners are trained on the original dataset, while the meta-learner is trained on the outputs of the
base-learners. Furthermore, there are pre-made ensemble learning models available in standard
modules, such as Random Forrest (RF) and Gradient Boosting Machines (GBM). RF is the simplest
example of ensemble that constructs multiple DTs during training and combines their predictions to
improve accuracy and reduce overfitting (Breiman, 2001). GBM is a sequential ensemble learning
technique that combines the output of multiple weak learners in a weighted manner, to form a strong
learner (Friedman, 2001), where the model grows in a stage-wise fashion, and its performance

improves over iterations (Natekin and Knoll, 2013).

For example Dudek (2015) used RF to hourly ODADF for Poland, based on two years, split 12:1,
achieving MAPE 1.84%. RF performed better than ARIMA, MLR and hybrid of LR-DT MAPE 2.42%,

2.81% and 2.53%, respectively. However, it performed worse than hybrid of SD approach and PCR or
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PLSR MAPE 1.34% and 1.35%, respectively (Dudek, 2016). Study by Fan, Chen and Lee (2009) used
ensemble of four bagged MLP to hourly ODADF for US, based on years 2005-2007, split 2:1, achieving
MAPE 2.06%, while best base-learner achieved MAPE 2.71%. Study by Khwaja et al. (2015) used two
ensembles of MLPs for New England, based on years 2004-2009, split 2:1, achieving MAPE 1.74% and
1.66% for thirty bagged and twenty-five boosted ensembles, respectively, while the best base-learner
achieved MAPE 2.74%. Study by Grmanova et al. (2016) used ensemble of eleven stacked models for
hourly ODADF in Slovakia, based on years 2013-2015, split 5:1, achieving MAPE 1.3%, while the best
base-learner, HWES achieved MAPE 1.5%. Base-learners included MLP, SVR, MLP and AR models, each
optimised based on its structure. Foster (2020) used RF and ensemble of 14 models to hourly ODADF
for Northern Ireland, based on years 2013- 2019, achieving MAPE 2.68% and 2.63%, respectively, while
the best base-learner, CNN achieved MAPE 3.02%. For New York, based on years 2012-2017, the
models achieved MAPE 4.51% and 3.20%, respectively, while the best base-learner, MLP achieved
MAPE 3.75%. All ensembles performed better than MLR, MLP, LSTM and CNN from previous sections.
Study by Kathirgamanathan et al. (2022) used six ensembles of various models to hourly ODADF for
New England, based on years 2004-2009, split 4:1. First three models were bagged MLP, CNN and
LSTM, achieving MAPE of 4.06%, 3.52% and 3.54, respectively. Other three were boosted MLP, CNN
and LSTM, achieving MAPE of 3.00%, 3.00% and 3.03%, respectively. Bagging and boosting improved
the consistency and accuracy of base-learners, respectively. However, boosting improved both for
LSTM. Reduction of training data degraded the prediction and increased its standard deviation for all
models. Nevertheless, boosting and bagging was able to compensate for reduction of data. Another
study by Osowski et al. (2022) used six ensembles of various base models and various combining
functions to hourly ODADF for Poland, based on years 2014-2019, split 7:3. The first four ensembles
consisted of MLP, RBF and SVR models integrated using Ordinary Averaging, Principal Component
Analysis (PCA), Independent Component Analysis (ICA), and autoencoder, respectively, achieving
MAPE 1.83%, 1.81%, 1.73% and 1.61%, respectively. The fifth ensemble was based on Wavelet
Decomposition and application of SVR and achieved MAPE 1.54%. The sixth ensemble was composed
of five integrated LSTM predictors and achieved MAPE 1.53%. The results revealed high advantage of
using variety of individual predictors integrated into ensemble. Additionally, each ensemble

performed better than any base-learner of which ensemble was composed of.

Above studies employed various ensemble architectures to ODADF. By combining the strengths
of different models and reducing the impact of individual model weaknesses, ensembles could
produce more accurate and robust predictions than their base-learners separately. Moreover, they
were effective in reducing overfitting, handling noise and outliers, and help to generalise better to

unseen data. Furthermore, they mitigated the impact of individual model errors or biases, resulting in
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more consistent and reliable predictions. However, they faced some challenges and limitations.
Selecting the appropriate base-learners and determining the optimal combination methods was the
largest challenge. It required careful experimentation, validation, and fine-tuning to achieve the best
performance. Moreover, combination of multiple models reduced interpretability. Finally, they
required more computational power and memory compared to individual models, which could limit
their applicability in resource-constrained or real-time forecasting scenarios. Therefore, future
research should focus on exploring the potential of ensemble learning (Wu et al., 2021) and
transformers (Vaswani et al., 2017) in STLF, which have shown promising results in other domains.
That effort would contribute to the development of more efficient, reliable, and sustainable power

systems, better equipped to handle the challenges of the future.

2.3. Forecasting Competitions and Rankings

Public competitions, although not strictly considered a research, provide valuable insights into
the benefits, challenges and limitations associated with different methods used to solve a particular
problem. Participants from various backgrounds propose their solutions, revealing potential
advantages and drawbacks of different techniques. While public competitions may not strictly adhere
to the research methodologies commonly followed in academic studies, the findings and knowledge
gained from winning solutions can be leveraged to develop new methodologies and refine existing
models. Time series forecasting competitions can be traced back to 1970’s and have promoted the

development of forecasting research and applications (Hyndman, 2020).

In the STLF area, a series of three Global Energy Forecasting Competitions took place in years
2012, 2014, and 2017 (Hong, Pinson and Fan, 2014; Hong et al., 2016; Hong, Xie and Black, 2019).
However, their results might have become outdated. Nevertheless, in 2022 (Farrokhabadi et al., 2022)
published paper with results of the most recent competition, organized by their authors in year 2020-
21. Participants were tasked to perform ODADF in a municipal area in a post-COVID paradigm. Dataset,
covering a period of four years 2017-2021, had been split arbitrarily and released daily in batches.
Nearly three-hundred participants were expected to send their forecast within twenty-four hours.
Finally, nine of them achieved average performance metrics above benchmark model. The first place
claimed ensemble of seventy-two base models, including AR, LR, Generalised Additive Models (GAM),
RF, RF for GAM residuals, MLP, and Kalman Filter Adaptation. Base model were combined using Online
Robust Aggregation of Experts, described in (Obst, De Vilmarest and Goude, 2021). The second place
took hybrid model, combining Similar Days (SD) approach using day type and peak temperature, with
adjustment based on peak load forecast recent profiles from days of the same type. The third place

secured ensemble of 674 models, including decomposed ETS, AR, GAM, and Lasso. Base models were
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combined by smoothed Bernstein Online Aggregation. The fourth place took ensemble of three other
ensemble learning models, such as RF, GBM, and XGBoost. They were combined using weighted

average based on recent performance. The fifth place took Deep Residual Networks model.

In summary, ensemble learning models took the first, third, and fourth place, hybrid model took
the second place and Deep Learning model took the fifth place on the podium. Neither MAPE nor
other common performance metrics were not given in the paper. Instead, a MAE Skill Score was
calculated based on ratio of MAE for benchmark model and evaluated model, then decreased by one.
On that scale the models from the first to fifth place got the skill score of approximately 28%, 25%,
24%, 20% and 19%, respectively.

2.4. Exogenous Input Variables

Historical power system demand is the main critical input variable of all forecasting models.
There are solutions utilising solely that variable, called univariate AR models, which assume that other
factors impacting demand change gradually, and become feature which is captured in the data series
itself (Taylor and McSharry, 2007). However, the vast majority of researchers found that inclusion of

calendar and weather factors improves the performance of forecasting models.

2.4.1. Calendar Variables

The majority of researchers extracted the calendar variable and used it in pair with historical
demand as input vector to their models. To represent the annual pattern, a common choice was to
use cyclical encoding, such as sine and cosine waves to optimally represent the seasonality of the time
series. The same approach was used to represent daily pattern but not the weekly pattern, as the
variation in load profile was not sufficiently cyclic over a week (Foster, 2020). For example, that
approach was utilised in MLP in (Bakirtzls et al., 1996; Tsekouras, Kanellos and Mastorakis, 2015).
Additionally, time of the day was also represented using a different number for each hour as in MLP
in (Park et al., 1991). To represent days of the week, a common choice was to use One-Hot Encoding.
For example, that approach was employed in MLP in (Tsekouras, Kanellos and Mastorakis, 2015), and
in GRU in (Yu et al., 2019). Moreover, holidays were commonly marked to differentiate them from

working days by binary variable, as in (Jiao et al., 2018; Yu et al., 2019).

2.4.2. Weather Variables

Weather variables are the meteorological measurements that describe various aspects of
atmospheric conditions, such as temperature, relative humidity, wind speed, precipitation,

atmospheric pressure, solar radiation and cloud cover. Their impact on STLF has been well researched
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but their selection varied between researchers. Some used only temperature, while others use more
or even all variables with dimensionality reduction techniques. Additionally, Fidalgo and Matos (2007)
claimed that weather variables should reflect the characteristics of the specific country. Therefore,

each forecasting model must be finely tuned to the country in which it is being used.

Temperature has been the most apparent variable which impacts power demand. Hong and
Shahidehpour (2015) claimed that temperature alone explains at least 70% of the variation in demand.
However, customer do not react immediately to a change in temperature (Bolzern, Fronza and
Brusasca, 1982). Additionally, use of air-conditioning affects the demand in summer (Hong and
Shahidehpour, 2015). Therefore, researchers using linear models wanted to capture the non-linearity.
For example, Hinman and Hickey (2009) used squared value of daily temperature average in MLR
model. Study by Wang, Liu and Hong (2016) addressed the phenomenon of the demand dependency
on the recent temperature pattern, and described it as recency effect. Using MLR model, Hinman and
Hickey found that the optimal performance when lagged temperature from the previous twelve hours
and two daily moving average temperatures for the past two days were included. Another study by
Pardo, Meneu and Valor (2002) examined introduction of heating (HCD) and cooling degree days (CCD)
as input to the model to represent very high or very low temperature, above or below which the
building did not require heating or cooling, respectively (Day, 2006). Many sources used HCD of 15.5°C
and did not use CCD for UK (Day, 2006; Beggs, 2012). However, Foster (2020) found that complex

temperature variables were not superior to simple lagged ones for Northern Ireland.

Relative humidity and wind speed have been the subsequent two most influential variables
identified in research. They had impact on how people feel the temperature (Steadman, 1984). Xie et
al. (2018) expanded the algorithm build by Wang, Liu and Hong (2016) by relative humidity variable
and further increased the model performance. Wind speed had double impact on load variation.
Higher wind speeds affected the chill index, increasing demand (Taylor and Buizza, 2003) and at the

same time impacted RES generation, decreasing the demand from system sources (Foster, 2020).

2.5. Issues with Comparison of Research Results

The number of papers on STLF increases every year and hence the number of proposed
techniques. Unfortunately, most of the approaches could not be replicated or validated and many
issues have been observed and reported in literature. The first one was related to dataset on which
models are evaluated. Many studies were based on unique and non-publicly available data (Hong et
al., 2020). Furthermore, more than half of publications were evaluated on single dataset and most of

them demonstrate superiority of their proposed approach over others based on above (Scheidt et al.,
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2020). Moreover, the length of analysed period significantly affected the quality of forecasting (Czapaj,
Kaminski and Sottysik, 2022). The length of used time series and their graduation differed substantially
between studies and ranged from one month to several years and from one minute to one hour,
respectively (Scheidt et al., 2020). The second problem was related to lack of consensus regarding
evaluation metrics (Ahmad et al., 2022). They were often inadequate or arbitrarily selected (Hong et
al., 2020). RMSE and MAE were easy to interpret but made comparison between datasets complicated
(Scheidt et al., 2020). Additionally, Czapaj, Kaminski and Sottysik (2022) claimed that the forecasting
effectiveness described solely by the lowest MAPE was ambiguous. The third problem was related to
risk of bias. Some well-known datasets might give researchers unfair advantage to their proposed
method (Hong et al., 2020). Additionally, truncation of the dataset might be used to increase accuracy
(Czapaj, Kaminski and Sottysik, 2022). The last problem was avoidance of direct comparison with
established and state-of-the-art models. Therefore, while there has been no universal one-fits-all

solution, comparison of research findings was even more complicated due to many factors.

2.6. Conclusion

This literature review provided a comprehensive overview of various approaches to STLF abroad,
focusing on single and complex methodologies, exogenous variables influencing demand and issues
with comparison of research results. It served as a robust foundation for the research objectives,
which include the development and evaluation of ensemble learning models, as well as revealing their
potential in ODADF in Ireland. While ensemble learning has not yet been studied in the context of
Ireland's power system demand forecasting, this approach holds significant promise and could address

the current knowledge gap in this area.

The diverse range of reviewed sources, employing variety of methodologies from traditional ones
to current advancements, offered a rich, multifaceted perspectives on the field, which provided vital
information that directly informed the first research objective. The strengths and weaknesses of
various methodologies, under specific conditions reported in research, was invaluable in guiding the
selection of the base-learners and integration methods to develop the ensemble learning framework
for this research. The significance of incorporating historical power demand data, calendar variables,
and weather variables in forecasting models and various strategies employed by researchers in the

field for incorporating these variables, informed the implementation of the framework.

As for the second research objective, the literature review underscored the importance of

evaluating the performance of ensemble learning models by comparing their metrics based on a
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consistent and effective approach. Insights gleaned from real-world applications informed the

experimental design for this research.

As for the third research objective, the literature review shed light on the challenges and
limitations in the field, such as issues with lack of comparisons with established models. These insights

were instrumental in the exploration of ensemble learning models’ potential to ODADF in Ireland.

Finally, this literature review had not only deepened the understanding of the field, but also
significantly shaped the direction of the research objectives. The rich information and critical
evaluations gleaned from the sources illuminated the methodologies, variables, and practical
considerations that required focus. The review thus provided an invaluable basis for the design and
development of an optimal ensemble learning configurations to ODADF and significantly informed

future research and development recommendations.
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3. Research Methodology

3.1. Concise Methodology Framework

The primary research methodology of this research was experimentation. The aim was to
determine the cause-and-effect relationship between ensemble learning configurations and power
demand forecasting performance metrics, in order to find the best architectures for One Day-Ahead
Demand Forecasting (ODADF) in Ireland. The methodology framework was divided into three major
phases, such as data preparation, experimentation with ensemble learning architectures, including
base-learners and integration methods, and validation of results (Figure 3.1). Figure 3.2 depicted

structured overview of the research methodology as high-level pseudocode.
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Figure 3.1. Schematic of the research methodology framework.
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// Preparation Phase
LOAD dataset of power demand time series for years 2014:2022
SELECT 22 automatic weather stations
FOR weather station IN automatic weather stations:
LOAD weather dataset for weather station time series
SELECT [name] FROM weather dataset AS station name

SELECT [temperature, humidity, wind speed] FROM weather dataset WHERE 2014 < year £ 2022 AS selection

APPEND [station name, selection] TO weather features
SAVE dataset of weather features to CSV file
// Cleaning and Processing the Data Phase
CLEAN power demand time series
RESAMPLE power demand time series
SCALE power demand time series
EXTRACT temporal features from power demand time series timestamps
CONVERT temporal features of power demand to cyclical and vector formats
LOAD dataset of weather features
FOR weather factor IN [temperature, relative humidity, wind speed]:
FOR approach IN [linear regression, lasso regression]:
| CREATE representative virtual weather station
SELECT representative real weather station
FOR approach IN [similar day, moving window]:
DEFINE supervised learning problem
IF approach IS similar day:
|  SELECT temporal features, weather station, weather factors and lagged power demand
ELSE: // moving window
| SELECT temporal features, weather station, weather factors, and window size
CREATE supervised learning problem dataset
SPLIT supervised learning problem datasets into training datasets 2014:2019 and testing datasets 2021:2022
SELECT power demand FROM training datasets WHERE 2014 < year < 2019
SELECT baseline models
FOR baseline model IN baseline models:
MAKE baseline models predictions for year 2019
EVALUATE baseline models ON year 2019
// Experimentation Phase - Base-learners of Ensembles
SPLIT training datasets into training subsets 2014:2018 and validation subsets 2019
SELECT potential base-learners along with associated hyperparameters and their ranges
FOR base-leaner IN potential base-learners:
TUNE hyperparameters of potential base-learner 2014:2018 using Bayesian optimization with 10-Fold CV
TRAIN potential base-learners on training subsets
MAKE base-learners predictions for years 2015:2019
EVALUATE potential base-learner ON validation subsets
SELECT 20 top-performing potential base-learners as base-learners
// Experimentation Phase - Meta-Learners of Ensembles
SELECT potential meta-learners of ensembles along with associated hyperparameters and their ranges
FOR meta-learner IN [heuristic rules, classifier and regressor]:
IF meta-learner <> heuristic rules:
TUNE hyperparameters of meta-learners 2015:2018 using Bayesian optimization with 10-Fold CV
TRAIN potential meta-learners using 20 base-learners predictions for years 2015:2018
MAKE ensemble predictions for years 2015:2019
EVALUATE potential meta-learners ON validation subsets
SELECT classification meta-learner of ensembles for validation phase
// Validation Phase
SPLIT testing datasets into training subset 2021 and validation subset 2022
FOR base-learner IN base-learners:
REFIT base-learners on training subset 2021
MAKE base-learners predictions for years 2021:2022
EVALUATE base-learners on unseen validation subset 2022
REFIT classification meta-learner of ensembles using 20 base-learners predictions for year 2021
MAKE classification-based ensembles predictions for year 2022
EVALUATE classification-based ensembles ON validation subset 2022

Figure 3.2. High-level pseudocode as structured overview of research methodology.
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The first part of the preparation phase identified two populations, in the context of utilising
secondary datasets into primary research. The first one was the whole dataset containing total power
demand measurements from Ireland, available from EirGrid (2023). The second one consisted of
weather factors measurements from weather stations in Ireland, available from MetEireann (2023).
Non-probability sampling and judgment sampling were used as sampling method and type,
respectively. Quantitative research approach was used, which involved pre-processing, integration of
data, and conducting Exploratory Data Analysis (EDA). Time series of power demand, collected from
national system operator, was cleaned, resampled, scaled, and enriched by extraction of temporal
features, and subsequently converted to cyclical and vector formats. Time series of weather factors,
collected from twenty-two weather stations of the national meteorological service, were trimmed to
cover temperature, relative humidity, and wind speed for years 2014-2022, and then cleaned. Unlike
demand, where the data was given for the entire country, weather data was distributed locally. Given
that inclusion of twenty-two weather stations into research was not feasible, three approaches to find
representative stations were proposed, such as two virtual weather stations created by Linear and

Lasso Regressions, and the most important real one.

In the second part of preparation phase, baseline models were examined, and supervised
learning problems were defined, for Similar Day (SD) and Moving Window (MW) approaches. As one-
day ahead forecasting is in practice performed at least several hours in advance, current-day partially
available data had to be removed from consideration, to avoid double forecasting phenomenon.
Investigation into feature importance was performed to select the best ones, considering all three
representative weather stations, utilising methods such as Forward and Backward Selection
(Elimination) Regression, Lasso Elimination Regression, Random Forest and Permutation Feature
Importance, separately for SD and MW approaches. Subsequently, supervised learning problem
datasets were created for both approaches. Finally, datasets were split into training and testing

datasets, covering years 2014-2019, and 2021-2022, respectively.

The first part of the experimentation phase identified the population of interest, in the context
of the primary research, as the entire set of possible ensembles configurations, including all
combinations of selected base-learners and techniques of integration, with their respective
hyperparameters. Non-probability sampling and judgment sampling were used as sampling method
and type, respectively. The base-learners belonged to supervised machine and deep learning
algorithms designed to solve regression problems, possibly able to incorporate exogenous factors,
such as calendar and weather features. Ensemble learning models were compilation of base-learners
with their hyperparameters integrated by three stacking techniques, such as heuristic rule,

classification, and regression-based methods.
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In the second part of experimentation, training datasets were further split into training and
validation subsets, covering years 2014-2018, and 2019, respectively. Then, Bayesian optimisation was
used for hyperparameters tuning of potential base-learners, using 10-fold cross-validation, and
predictions were made for years 2015-2019. Potential base-learners were evaluated on year 2019,
and twenty of the most promising ones were selected as base-learners. Finally, predictions of base-
learners became the training dataset for meta-learners of the ensembles. Heuristic rule-based
ensembles were used as the baseline models. Bayesian optimisation was used for hyperparameters
tuning of classification-based and regression-based meta-learners, using 10-fold cross-validation, and
predictions were made for years 2015-2019. Potential meta-learners were evaluated on data from

year 2019, and classification-based ensembles were selected for further investigation.

In validation phase, testing datasets were further split into training and validation subsets,
covering years 2021 and 2022, respectively. Then, the twenty base-learners, with hyperparameters
inferred from the second stage, were refitted and evaluated on unseen data from 2021 and 2022,
respectively. Subsequently, predictions of base-learners became the training dataset for meta-
learners of the ensembles. Finally, the potential of classification-based ensembles was validated on

data from year 2022.

3.2. Project Management Framework

CRISP-DM, a proven and widely acceptable methodology in data science projects (Vorhies, 2016),
ensures that business objectives remain at the centre of the project (Saltz, Shamshurin and Crowston,
2017). It is free, neutral in regards of application, industry and tools used, and approaches the life
cycle of the project from both, an application-focused and technical perspectives (Negro, 2021).
Therefore, CRISP-DM, adapted to the requirement of this research, was selected as project

management framework for this research (Figure 3.3).

3.3. Business Understanding

The background, research objectives, and literature review covered in Chapters 1 and 2,
respectively, formed the business understanding phase. Accurate ODADF was found crucial for
electrical network reliability, the environment, and trading markets. Problem with achieving accurate
predictions by individual and hybrid models in the dynamic conditions of the power system operation,
had been identified. Finally, ensemble learning approach was identified as possible solution to

overcome the limitations of those methods.
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Figure 3.3. CRISP-DM Project Management Framework. Adapted from Chapman et al. (2000)

3.4. Data Understanding

Time series of power demand in Ireland was collected from the national system operator EirGrid
(2023), through their Application Programming Interface (API). It covered fifteen-minutes average
power demand in Ireland, for the available period from 18/07/2013 to 10/06/2023. Full years 2014-
2022 were used in order to allow proper pattern recognition. Time series of Irish weather factors were
collected from repository of national meteorological service MetEireann (2023). Unlike demand,
where the data was given for the entire country, weather data was distributed locally. From all
observing weather stations in Ireland, twenty-two automatic ones, recording data for temperature,
wind speed and relative humidity every minute, subsequently hourly aggregated and validated by
meteorologists, were selected. Given that the original dataset covered more variables for much longer
period than needed, datasets were trimmed to cover years 2014-2022 and three selected weather
factors only, to accelerate their further processing. Additionally, coordinates of weather stations were
extracted from datasets, and presented on the map of Ireland, using Folium module and information
contained in JSON dataset, collected from Free Software Foundation (FSF, 2023). Initial EDA was

performed to detect distortions, missing timestamps, missing data and outliers in time series.
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3.5. Univariate Data Preparation

The univariate data was enriched by extraction of day of the week, holidays observed on
weekdays, day of the year and hour from timestamps. Detected distortions, missing data and outliers
were dealt with, using data analytics methods. Firstly, time series affected by Daylight-Saving Time
(DST) distortion were shifted back by one hour to revert their continuity, and the one-hour gaps were
filled using second-degree Polynomial Regression interpolation. The new data was validated using
Coefficient of Determination R? and RMSE metrics, as well as visual comparison to SDs from up to five

neighbouring weeks before the affected day.

Single and continuous missing values were filled using Linear Regression (LR) interpolation of the
neighbouring timestamps, and SDs from neighbouring weeks, respectively. Flat parts of time series,
with the same value repeating more than six times (1.5 hour) and spikes, with rapid value change by
more than 300MW, were treated as outliers, and replaced using LR interpolation of SDs from
neighbouring weeks. Validation of the cleaning process was performed by comparing the distributions

of power demand before and after the process.

EDA was performed on cleaned dataset, including descriptive statistics, and visualisation of raw
and normalised time series, to find patterns in time series, as well as similarities and differences
between days of the week. Time series was then resampled to one-hour interval by averaging the
values, for consistency with current research. Inferential statistic was performed on cleaned dataset,
including Shapiro-Wilk normality tests, Mann-Kendall trend tests, Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity tests, auto-correlation (ACF) and partial auto-
correlation (PACF) tests, on original and first-order differenced time series. Additionally, Multiple
Seasonal Patterns Decomposition (MSTL), as proposed by Bandura, Hyndman and Bergmeir (2021),
was performed on of hourly time series to inform further research. Subsequently, supervised learning
problems were defined for SD and MW approaches, utilising historical weekly lags and continuous

historical demand values, respectively.

For SD approach, an investigation into weekly lagged power demand was performed to find how
an individual or range of individual values could be utilised for ODADF. Then, LR was considered for
adjusted predictions for one week, one year (52 weeks), and a range 1-52 weeks ago. Similarly,
investigation into daily lagged demand was performed. Subsequently, research into MW size was

conducted for MW approach.

Power demand values were scaled by dividing by the global maximum value, effectively placing

them in a range between 0 and 1. This approach, while similar to the MinMax scaler, avoided values
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near or equal to zero. Such scaling was found beneficial for modelling and evaluating models,
particularly for the MAPE metric calculation. The day of the week, represented as categorical values
from Monday to Sunday, was converted into a numerical vector using a One-Hot Encoder. In this
encoding, a particular column was set to 1, while the others were filled with zeros. Observed holidays,
being categorical values Yes or No, were converted to numerical values 1 or 0, respectively. Day of the
year and hour of the day, being numerical values 1-365 (366 in leap year) and 0-23, respectively, were
converted to a cyclical format using sine and cosine functions. The conversion approach was then

validated by correlation study.

3.6. Multivariate Data Preparation

Time series of weather factors, affected by DST, were shifted back by one hour to restore their
original continuity, and the one-hour gaps were filled using their monthly mean values. Wind speed,
given in knots, nautical-miles-per-hour, was converted to kilometres-per-hour, by multiplication by
1.852. Then, correlation study between actual power demand and lagged weather factors was
performed. For each weather factor, three approaches for representative weather station were
proposed, such as two virtual weather stations created by Linear and Lasso Regression, and the most
important real weather station, revealed by Lasso Regression. Results were validated by correlation
study between actual demand and lagged weather factors for each solution, and by comparing
individual distributions and correlation plots. Finally, weather factors were scaled using the MinMax

scaler, effectively converting their values to a range from 0 to 1.

The final supervised learning problem datasets were created for SD and MW approaches. For the
SD approach, weekly lags with a correlation above 90% were considered. An investigation into feature
importance was carried out to select the best features. Several methods were utilized:
e Forward Selection Regression: the variable that, upon addition, provided the most significant
improvement to the fit was permanently added to the selection,

e Backward Selection (Elimination) Regression: the variable whose removal resulted in the least
increase in error was permanently eliminated from the selection,

e Lasso Features Selection (Elimination) Regression: variables were removed from the selection by
increasing the value of hyperparameter alpha,

e Random Forest Feature Importance. This method leveraged the inherent structure of random
forests by assessing how frequently a feature was used to split the data and its impact on reducing
impurity. Important features were those that frequently improved the purity of the node.

e Permutation Feature Importance. This method evaluated feature importance by measuring the
decrease in model accuracy when the feature's values were randomly shuffled. A significant drop
in performance indicated that the feature was important.
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For MW approach, an investigation into feature importance was performed to select the best ones
for the univariate size of the MW. Then, investigation into MW size and selected features was

performed recurrently to select features and size which achieved the lowest MAPE.

The whole dataset covered period from year 2014 to 2022. However, it was observed that from
27/03/2020 to 26/07/2020, during various phases of Covid-19 lockdown in Ireland, the pattern of
power demand was seriously disrupted by regulations at national level. As the research did not
concentrate on examining that period specifically, but rather focused on forecasting of power demand
under normal conditions, an approach was proposed to train all models on data in years 2014-2018
and validate the results on year 2019. Then, all models with hyperparameters tuned on data in years
2014-2018 were refitted and tested on years 2021 and 2022, respectively. That way, data from year
2020 was not considered in models training and evaluation, and the disrupted period did not influence
the results of this research. That approach aligned with the optimal splitting considerations by Roshan
(2022). Finally, given that different models had unique data shape requirements, the final datasets

were tailored accordingly.

Several performance metrics were reported in this research, including:
e Mean Square Error (MSE): calculated as the quadratic mean of the differences between predicted
and observed values. It served as the function that optimizers aimed to minimize,
e Root Mean Square Error (RMSE): derived from the square root of the MSE,
e Mean Average Error (MAE): determined by dividing the sum of absolute errors by the sample size,

e Mean Average Percentage Error (MAPE): the mean difference between predicted and observed
values relative to the observed values. Furthermore, MAPE was broken down by day of the week
(including observed holidays), month, and hour to facilitate a detailed evaluation.

While Grid-search and Random-search are well-known techniques for hyperparameters tuning,
they face significant limitations. Grid-search is computationally intensive due to exhaustive
combinations and is highly sensitive to the range and count of pre-selected hyperparameters. On the
other hand, Random-search, while efficient, might overlook optimal values due to its random selection
process. In contrast, Bayesian optimisation offered a more efficient and data-driven approach. It
worked efficiently with both discrete and continuous variables, beginning with random
hyperparameters sampling and then finding the best hyperparameters using a Gaussian process,
iterating until the maximum number of trials was achieved. Significantly, Bayesian optimisation
seamlessly integrated model's internal hyperparameters with external ones, such as name of weather
station, for example. Therefore, for this project, Bayesian optimisation was selected for
hyperparameters tuning, using hyperopt module. To mitigate the risk of overfitting and to ensure a

reliable hyperparameter performance estimate, 10-fold cross-validation was employed. This approach
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aided in evaluating both the model's bias and variance, providing insights into its generalization

capabilities on unseen data (Burkov, 2019).

Finally, the simplest baseline models were considered, such as naive last year value, historical
years mean, and last year mean, which repeated a single value for the whole next year. Then, similar
day - one week, and one year (52 weeks) ago - were examined. Finally, the state-of-the-art univariate
time series models, such as TBATS (De Livera, Hyndman and Snyder, 2011), NBEATS (Oreshkin et al,
2020), and NHITS (Challu et al, 2023) were taken into consideration. However, the last one was not

employed in this research due to lack of available documentation.

3.7. Modelling and Evaluation of Base-Learners

According to research in ensemble learning models (Sollich and Krogh, 1996; Kuncheva and
Whitaker, 2003), they tend to yield better results when there is a significant diversity among the base-
learners. Therefore, successful implementations promote diversity among the models they combine
(Adeva, Beresi and Calvo, 2005; Brown et al, 2005). Based on that, and the information gathered
through literature review, ML models, such as LR, Ridge, Lasso, SVM, GBM and MLP Regressors were
considered as potential base-learners, using SD and MW approaches. Additionally, DL models, such as
CNN and LSTM were examined as base-learners using SD approach. However, it was not feasible to
include them, based on MW approach, within the timeframe of the research. Hyperparameters tuning
was performed, for all base-learners and their selected hyperparameters, using data from years 2014-
2018 and validated, using 10-fold cross-validation, on data from year 2019. Kolmogorov-Smirnov tests

were performed to compare predictions’ and actual demand’s distributions.

3.8. Experimentation with Ensemble Learning Models

Various architectures of ensembles, that incorporated twenty base-learners, were examined.
Integration by stacking was represented by heuristic rule-based ensembles, as well as by classification,
and regression-based meta-learners of ensembles. Their performance as a function of the day of the
week, month and hour were examined, followed by Kolmogorov-Smirnov tests and the percentage

share of base-learners in the best predictions by year and the day type.

Firstly, heuristic rule-based ensembles were considered, including mean, median, and base-
learners with lowest MAPE one day, one week, and one year (52 weeks) ago. Secondly, classification-
based ensembles - on explanatory variables only - were examined. Classifiers, such as Logistic
Regression, SVM, GBM and MLP, were assessed as meta-learners. The product of probabilities, of

base-learners being the best predictors for particular hour, day type, day of the year, weather factors,
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and their predictions, were taken as ensemble predictions. Finally, regression-based ensembles,
based on limited and unlimited number of base-learners’ predictions, were considered. Regressors
such as LR, SVM, GBM and MLP were examined as regression meta-learners, their predictions were
evaluated on data from year 2019, and tested with Kolmogorov-Smirnov tests. Then, ensemble

learning models’ performance as a function of the day of the week, month, and hour, were performed.

3.9. Deployment

Classification-based ensembles, as the top performers, were refitted and tested on unseen data.
Firstly, the twenty base-learners, with hyperparameters inferred from previous phase of
experimentation, were refitted and evaluated on unseen data from years 2021-2022, respectively.
Subsequently, classification-based meta-learners, with hyperparameters inferred from previous
phase of experimentation, were refitted and evaluated on the base-learners’ predictions, and data
from year 2022, respectively. Then, base-learners’ and classification-based ensembles’ performance
as a function of the day of the week, month and hour were performed, followed by the percentage
share of base-learners in best predictions by year and day type study. Finally, the results and
limitations of the research were discussed, and recommendations for further investigation were

provided.

3.10 Tools and Technologies

All computations in this project were performed on Lenovo Legion 5 Pro with AMD-Ryzen7-5800H
processor, 64GB RAM, running Windows 10. Python and its libraries implemented in Jupyter Notebook
were used for this project. Version control system Git helped to track and manage changes to files on

local computer, while repository hosting GitHub helped to secure them in the cloud.

3.11. Limitations and Ethical Considerations

This section addressed the ethical considerations inherent in the Data Analytics Project as
foundation for responsible research conduct, ensuring the protection and well-being of individuals
and organisations, both involved in the research and affected by its results, following principles for
dissertations (Resnik, 2005, 2018; Shamoo and Resnik, 2009; Bryman and Bell, 2015; Saunders, Lewis
and Thornhill, 2015; Adams and McGuire, 2022).

The whole research was performed on personal computer with original operating system, word
processing software, open-source distribution of Python programming language and its relevant

scientific packages and libraries. Secondary datasets for power demand and weather factors are

27



publicly available, with Open Data and Creative Commons Licenses, respectively, subject their

acknowledgment, while retaining ownership of the data.

In regards to the primary research, bias was inherent in non-probability, judgment sampling.
Moreover, due to time constraints of the research, a balance between performance and
computational complexity of the configuration was considered. To reduce bias and ensure that chosen
sample was truly representative for the entire population, a wide range of models, with different
characteristics was selected. To ensure identical experimental environment, each ensemble was
trained and validated on the same training datasets. The results from sample of units inferred to the
performance of all ensembles in population. Therefore, the best performing model from the sample
was as close as possible to, and most likely, the best performing model in the whole population of

interest.

To build an ensemble, suitable individual predictors and ensemble techniques were pre-selected.
As the project was conducted within twelve-weeks period, a limitation in architecture of the ensemble
was recognised and accepted, with aim to develop a balanced ensemble model, where potential
benefits in accuracy were weighed against computational effort and complex model building.
Therefore, DL models were not incorporated for MW approach, and Bayesian optimisation of
hyperparameters tuning was restricted to twenty trials. Besides, hybrid models were not considered
for base-learners. Moreover, early-stopping was not integrated into the MLP, LSTM, and CNN models
because it was found to be incompatible with Bayesian optimisation, causing early stopped trials to
fail. Instead, the number of epochs was set as a hyperparameter to be optimised. Furthermore, while
three classes of stacking integration methods were examined in this research, neither bagging or

boosting ensembles were explored due to time-constraints of this research.
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4. Data Understanding
4.1. Data Collection

Time series of power demand in Ireland was collected from the national system operator EirGrid
(2023), Smart Grid Dashboard, through their Application Programming Interface (API) (Figure 4.1).
Time series of Irish weather factors were collected, as CSV files, from website repository of national
meteorological service MetEireann (2023). Unlike demand, where the data was given for the entire
country, weather data was distributed locally. From all observing weather stations in Ireland, twenty-
two automatic ones, recording temperature, wind speed and relative humidity every minute, then

hourly aggregated and validated by meteorologists, were selected.

/ Set years’ range 2013-2023 /

,= Get next value for year |

True N
»| Save to CSV file
I_:

Request data from EirGrid API I

False ) )
Display warning

Figure 4.1. Schematic of data collection for univariate time series of power demand in Ireland.

Year > 2023

Concatenate annual data

to Pandas DataFrame
r

4.2. |Initial Data Extraction and Exploration

4.2.1. Time Series of Power Demand in Ireland

Time series of fifteen-minutes average power demand for the whole Republic of Ireland
covered the period from 18/07/2013 to 10/06/2023. Full years from 2014 to 2022 were used in order
to allow proper pattern recognition. The data was enriched by extraction of temporal features, such
as day of the week, holiday observed on weekdays, day of the year and hour, from timestamps, using

calendar and holidays modules (Figure 4.2).

Timestamp I
A \ A v J
Day of the week: Holiday: Day of the year: Hour of the day:
Monday, Tuesday, Wednesday, Yes, No 1,2,3, .., 365 (366) 0,1,2,..,23
Thursday, Friday, Saturday, sunday Holiday observed on weekday Ordinal number Ordinal number

Figure 4.2. Schematic of data collection for univariate time series.
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4.2.2. Time Series of Weather Factors in Ireland

Time series of weather factors in Ireland covered one-hour average of various factors for many

decades. Temperature, relative humidity and wind speed were found the most important in recent

research. Therefore, to accelerate further data reading and processing, time series were trimmed to

cover years from 2014 to 2022 and above weather factors only (Figure 4.3). Additionally, names and

coordinates of weather stations, were extracted from those datasets, and presented on the map of

Ireland (Figure 4.4), using Folium module and geographical information contained in JSON dataset,

collected from Free Software Foundation (FSF, 2023).

I Download CSV Files from MetEireann Repository I

Extract name and coordinates

Trim data to years 2013-2023
and temperature, wind speed
and relative humidity

Save Final CSV File

t

== Get next Filename

No more files

I Read CSV File

False

Error

True

E

Display warning End

Figure 4.3. Schematic of data collection for weather factors time series in Ireland.

= | eaflet | Map tiles by Stamen Deslign, under CC BY 3.0. Data by © OpenStreetMap, under CC BY SA.

Figure 4.4. Location of 22 automatic observing weather stations in Ireland. Generated with Folium module and
geographical information contained in JSON dataset collected from Free Software Foundation (FSF, 2023).
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4.2.3. Distortions, Missing Values and Outliers Detection in Power Demand Time Series

While time series had no missing timestamps, ten days with missing values of 147 among 346,852
all values (less than 0.04%), were detected. Additionally, Daylight Saving Time (DST) introduced
artificial distortion by setting the clock by one hour forward and back in the spring and autumn,
respectively. That shifted time series by one-hour between time-change days, and created one-hour
gap and overlap every year, on the time-change day, in autumn and spring, respectively. That changed
the pattern in time series (Figure 4.5), and needs to be addressed. Dates of time-changes were

established using pytz module.
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Figure 4.5. Daylight Saving Time (DST) distortion creates one-hour gap and one-hour overlap every year, on the time-
change day in autumn and spring, respectively (see years 2013-2023 on the top row) what changes pattern in the
time series (see year 2022, similar days up to 5 weeks after/before the time-change day on the bottom row).

Within the ten days with missing values, five days missed single value and five days missed
continuous values. Furthermore, twenty-one days with outliers were detected. Flat parts of time
series, where the same value repeating more than six times (1.5 hour) occurred in twelve days (Figure
4.6). Spikes in time series, where the value changed rapidly, by more than 300MW in a single step,

occurred in nine days (Figure 4.7). They were treated as outliers, and need to be replaced.
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Outliers detected in Univariate Time Series - Flat Parts in Time Series
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Figure 4.6. Outliers detected in twelve days as flat parts of time series, where the same value repeats more than six times.
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Figure 4.7. Outliers detected in nine days as spikes, where the value changed rapidly, by more than 300MW per single step.

4.2.4. Daylight-Saving Time Distortion in Weather Factors Time Series in Ireland

DST distortion in weather factors time series was found, and needs to be addressed.

4.3. Conclusion

In this chapter, sources and selection of datasets were identified, and raw data was collected for
the fifteen-minutes averages of power demand, and one-hour averages of weather factors from
twenty-two weather stations in Ireland. Extraction of variables, such as day of the week, holidays
observed on weekdays, day of the year and hour, enriched the data by temporal features. Three most
important weather factors, such as temperature, relative humidity and wind speed were selected.
Initial EDA detected missing values and outliers in time series, including ten days with missing values
and twenty-one days with outliers. Moreover, DST distortion was identified in both, power demand
and weather factors time series. They need to be addressed to allow proper pattern recognition.

Finally, data was trimmed to cover full years 2014-2022.
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5. Data Preparation: Time Series of Power Demand in Ireland

5.1. Data Cleaning

5.1.1. Daylight-Saving Time Distortions Removal

Time series, affected by DST, was shifted back by one hour to restore their original continuity,

moving the one-hour gap from spring to autumn (Figure 5.1).
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Figure 5.1. DST distortion removal restores original continuity (see years 2013-2023 on the top) and moves the one-hour
gap from spring to autumn (see year 2022, days up to 5 weeks after/before the time-change day on the bottom).
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Figure 5.2. The one-hour gap connected with DST removal was filled using Polynomial Regression of second-degree
interpolation. Metrics, such as Coefficient of Determination R2 and RMSE validated the result.
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The one-hour gap was then filled using second-degree Polynomial Regression interpolation. New

data was validated by R? and RMSE metrics (Figure 5.2), as well as visual comparison to Similar Days

(SD) up to five weeks before that day (Figure 5.3).
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Figure 5.3. Daylight Saving Time (DST) distortion removal and one-hour gap filling using Polynomial Regression of second-
degree interpolation restores their original continuity (see years 2013-2023 on the top row and year 2022, similar
days up to 5 weeks after/before the time-change day on the bottom row).

5.1.2.

Dealing with Missing Data

Single and continuous missing values were filled using Linear Regression (LR) interpolation of

neighbouring timestamps (Figure 5.4), and SDs of neighbouring weeks (Figure 5.5), respectively.
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Figure 5.4. Filling single missing values for five days using Linear Regression interpolation.
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Power Demand in RO, filling multiple missing values using Similar Day approach
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Figure 5.5. Filling continuous missing values for five days using Linear Regression interpolation of similar days.

5.1.3. Dealing with Outliers

Outliers in time series, being flat parts and spikes, detected in previous chapter, were replaced

using LR interpolation of SDs from neighbouring weeks (Figures 5.6-5.7).
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Figure 5.6. Outliers: flat parts replaced using Linear Regression interpolation of similar days one week before and after.
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Figure 5.7. Outliers: spikes replaced using Linear Regression interpolation of similar days one week before and after.
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5.1.4. Summary and Validation of the Cleaning Process

The count of replaced values in the dataset was shown on Figure 5.8. Validation of the cleaning
process was performed by comparison of the power demand time series distributions before and after

the process (Figure 5.9). Finally, summary of the cleaning process was given in Table 5.1.
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Figure 5.8. The percentage of filled values in the dataset.
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Figure 5.9. Comparison of distributions of Univariate Time Series of Power Demand in Ireland distribution before and after
the cleaning process of DST removal, filling NaN’s and replacing outliers.
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Univariate Data Cleaning Process No of days Verification of solution
Problem type Solution affected Primary Final
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DST missing data econ ‘egr.ee ° yno.mla R2, RMSE, visual .
Regression interpolation Comparison
Single missing Linear Regression of of data
. . 5 o
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.o 5 .
missing data . . . 5 weeks before and/or the cleaning
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’ 1-week before and after the day 12 ¥
repeated data
Outliers: spikes 9

Table 5.1. Summary of the data cleaning process of Univariate Time Series of Power Demand in Ireland.

5.2. Exploratory Data Analysis: Power Demand Time Series

Descriptive statistics, including annual mean, standard deviation, minimum, median, and
maximum values, for years 2014-2022 was given in Table 5.2. Year 2020, affected by Covid-19
lockdown, was marked in grey. Distribution of observed holidays in Ireland by day of week for period

from July 2013 to June 2023 was given in Table 5.3. The majority of observed holidays in Republic of

Ireland occurred on Mondays.
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Year 2014 2015 2016 2017 2018 2019 2020 2021 2022
Mean 2492 3034 3092 3167 3299 3319 3338 3529 3606
6 599 591 593 597 604 606 638 611 607
Min 1664 1759 1882 1929 2037 2052 2004 2269 2429
Median | 3012 3102 3157 3237 3365 3390 3348 3591 3650
Max 4613 4704 4768 4939 4916 5015 5357 5363 5527

Table 5.2. Descriptive statistics of power demand in Ireland for years 2014-2022

Day of Week | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
# Holidays 61 6 6 6 8 0 0
# Total 516 516 516 516 517 516 516
% Holidays 11.8 1.2 1.2 1.2 1.5 0 0

Table 5.3. Distribution of observed holidays in Ireland by day of week for period from July 2013 to June 2023.

It was observed that from 27/03/2020 to 26/07/2020, during various phases of Covid-19
lockdown in Ireland, the pattern of power demand was significantly disrupted as consequence of

regulations introduced at national level (Figure 5.10).

Annual, Monthly and Weekly Mean of Actual Demand in Ireland from 2013 to 2023
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Figure 5.10. Visualisation of univariate time series: annual, monthly and weekly mean of power demand, and daily range of
power demand in Ireland. Covid-19 lockdown period marked as dashed red vertical lines.
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The annual boxplot of power demand in Ireland from 2013 to 2023 showed the median value

increasing every year, while the interquartile range remaining similar. The monthly boxplot suggested

annual seasonality, with lowest and highest values in summer and winter, respectively (Figure 5.11).
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Figure 5.11. Annual (on the left) and monthly (on the right) boxplot of power demand in Ireland. Covid-19 lockdown period

marked as dashed red lines.

Furthermore, the monthly boxplot for full years 2014-2022 (Figure 5.12) and daily mean of power

demand (Figure 5.13) confirmed that year 2020 might be indeed considered as an outlier.

Actual Demand in Ireland - Boxplot by Month for years from 2014 to 2022
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Figure 5.12. Monthly boxplots of power demand in Ireland by years. Covid-19 lockdown period marked as dashed red lines.
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To find similarities and differences between days of the week, power demand was normalised by
its daily mean values and visualised as average normalised demand for years 2014-2021 and 2022
(Figure 5.14). It was noticed that days of the week and holiday on weekday could be grouped. Tuesdays
shared similar pattern with Wednesdays and Thursdays, and Sunday shared similar pattern with

holidays on weekdays (Figure 5.15).
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Figure 5.14. Average normalised demand in Ireland, for various day types from 2014 to 2021 (top) and 2022 (bottom).
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Figure 5.15. Average normalised power demand in Ireland, for grouped day types from 2013 to 2023.

To investigate the pattern further, full normalised dataset was plotted for each of the groups
individually, with colour-marked seasons. The Tuesdays-Wednesdays-Thursdays group was plotted as
grey silhouette for other groups. The evening peak was the highest on Mondays in winter, and the
lowest on Sundays and holidays on weekdays in summer. The night minimum was the lowest on
Mondays in winter, and the highest on Saturdays, Sundays and holidays on weekdays. Furthermore,
morning demand rose later in winter than in summer, and was shifted forward for Saturdays, Sundays

and holidays on weekdays (Figure 5.16).
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Normalized Power Demand in Ireland from 2013 to 2023
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Figure 5.16. Normalised power demand in Ireland, for grouped day types from 2013 to 2023, with marked seasons.
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The boxplot of normalised dataset for each fifteen-minute period and all groups individually

(Figure 5.17), confirmed observations from previous paragraph. Moreover, it clearly depicted higher

values of interquartile range of normalised demand in the mornings and evenings.
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Boxplot of Normalized Power Demand in Ireland from 2013 to 2023
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Figure 5.17. Boxplot of normalised power demand in Ireland, for grouped day types from 2013 to 2023, with Tuesday-
Wednesday-Friday group shadowed in other graphs.

Density histograms of power demand and its daily mean were similar for working days but shifted
towards lower values for Saturdays, Sundays and holidays on weekdays. Moreover, normalised power

demand showed narrower range on those days in comparison to working weekdays (Figure 5.18).
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Figure 5.18. Density histograms of original and first-order differenced power demand, daily mean, and normalised power

demand in Ireland, for grouped day types, with Tuesday-Wednesday-Friday group shadowed in other graphs.

The original fifteen-minutes time series was resampled to one-hour and daily time series, by

averaging the values, for consistency with current research, and further analysis, respectively.

Shapiro-Wilk normality tests for power demand, daily mean of power demand and normalised

power demand, with null hypotheses that hourly and daily time series were normally distributed

revealed, that there was enough evidence to reject the null hypothesis and accept the alternative

hypothesis, that tested time series were not normally distributed. Above was consistent with density

histograms and Q-Q plots on Figure 5.19.
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Figure 5.19. Density histograms and Q-Q plots of power demand, daily mean, and normalised power demand in Ireland, for

grouped day types from 2013 to 2023, with Tuesday-Wednesday-Friday group shadowed in other graphs.
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Mann-Kendall trend tests for power demand, daily mean of power demand and normalised
power demand, with null hypotheses that there was no trend in hourly and daily time series revealed,
that there was enough evidence to reject the null hypothesis and accept the alternative hypothesis,

that there was trend in tested time series, with a positive slope value.

ADF stationarity tests for power demand, with null hypothesis that hourly and daily time series
were not stationary revealed, that there was not enough evidence to reject the null hypothesis.
However, KPSS stationarity test, with null hypothesis that the time series were stationary revealed
that there was enough evidence to reject the null hypothesis and accept the alternative hypothesis
that both time series were not stationary. Therefore, based on Statsmodels (2023), both time series
were difference stationary. Performing tests for first-order differenced demands confirmed that first-

order differenced time series were stationary.

ACF and PACF plots (Figure 5.20) were used for seasonality tests, by determining the significance
of the lags. The blue shaded area signifies the 95% confidence intervals, calculated under the null
hypothesis that the data are independently distributed. The blue dots are values of ACF and PACF for
particular lag. Values beyond blue shaded area would indicate they are statistically significantly
different from zero. Despite visible daily and weekly patterns in ACF, and annual pattern in PACF, in
first-order differenced daily time series, all values lie within the 95% confidence intervals. Therefore,

there was no statistically significant seasonality in either of them.
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Figure 5.20. ACF and PACF plots for first-order differenced hourly (top) and daily (bottom) power demand time series.
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The classical decomposition was not able to break down power demand correctly, due to
existence of multi-seasonal patterns in the time series. Therefore, Multiple Seasonal Patterns
Decomposition (MSTL), proposed by Bandura, Hyndman and Bergmeir (2021) was performed on
hourly time series (Figure 5.21). The first component illustrated trend, with values 2900-3700MW,
where the value experienced a steady increase over time, followed by a pronounced acceleration in
2018, which was succeeded by a more moderate incline in 2019. Covid-19 disturbed the 2020 trend
significantly. Finally, the trend reverted to its initial steady increase, continuing to rise at a gradual
rate. Further three components depicted daily, weekly and annual seasonality. The daily pattern, with
values -1000-1000MW, began with a nightly low, rose to a flat midday level, then climbed to an
evening peak, and finally decreased at night, completing the cycle. The weekly pattern, with values -
750-500MW, caught weekdays and weekends, and the annual pattern varied -750-500MW, leaving

residuals in range -250-250MW. That confirmed daily, weekly and annual seasonality in time series.

MSTL decomposition of Actual_Demand_MW hourly time series

From 2013-07-19 to 2023-05-31 From 2022-01-01 to 2022-12-31 From 2022-12-05 to 2022-12-11
- 5000+ 5000 - 5000
o
2 4000 4000 4000
[
8 3000 3000 - 3000
[e]
2000 2000 2000 1
2022-012022-03 2022-05 2022-07 2022-09 2022-11 2023-01 1205 12-06 12-07 12-08 12-09 12-10 1211 12-12
3800 3800 3800
3600 0] — 3600
el
C 3400 3400 3400
v
= 3200 4 3200 3200 4
3000 3000 3000 1
2022-012023-03 2022-05 2022-07 2022-09 2022-11 2023-01 12705 12706 1207 12708 1209 12710 1211 12712
1000 1000 4 1000
500 1 500 500

=500 1

~1000
2022-012022-03 2022-05 2022-07 2022-09 2022-11 2023-01 12-05 12-06 12-07 12-08 12-09 12-10 12-11 12-12

Seasonal lweek Seasonal_lday

250 250 4 250 4
04 04 04
|
—250 —250 4 —250 4
-500 —500 + —500 +
—750 —750 + —750 +
2022-012022-03 2022-052022-07 2022-09 2022-11 2023-01 12-05 12-06 12-07 12-08 12-09 12-10 12-11 12-12
.
S 500 - 500 4 500 4 W
z‘ 2504 250 o 250 o
|
E 01 0 0
c =250 1 =250 1 =250 1
[e]
% -500 —500 1 —500 1
2022-012022-03 2022-05 2022-07 2022-09 2022-11 2023-01 12-05 12-06 12-07 12-08 12-09 12-10 12-11 12-12
" 500 500 500
©
3
o 0 0 0
2
ﬂ: =500 —=500 4 —=500 4
2014201520162017201820192020202120222023 2022-012022-03 2022-05 2022-07 2022-09 2022-11 2023-01 12-05 12-06 12-07 12-08 12-09 12-10 12-11 12-12
Time Time Time

Figure 5.21. MSTL decomposition of hourly power demand daily time series. Covid-19 lockdown period marked as dashed
red lines. Columns present years 2013-2023, 2022, and one week in December 2022.
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5.3.

Investigation into Weekly Lagged Power Demand Time Series

To assess the potential use of weekly lagged time series in ODADF, an investigation was carried

out to identify the values with the highest correlation for the SD approach (Figure 5.22). It revealed

that lagging the demand by range 1-5 and 47-57 weeks yielded a correlation between variables

exceeding 90%.
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Figure 5.22. Correlation between actual and weekly lagged power demand in Ireland.
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To estimate the influence of a single k-weekly, and a range from 1 to k-weekly lagged time series

on ODADF MAPE, Linear Regression was used. Using adjusted values for one week ago or one year (52

weeks) ago, gave MAPE in range 3.16-3.57% and 2.64-4.45%, respectively, with years 2020-2021 being

the most affected by Covid-19 disturbances for the latter. As the value of k in range of 1 to k-weekly

lagged values increased, the MAPE steadily decreased. A noticeable plunge in the MAPE was observed

around value k=52, reaching MAPE in range 2.11-2.63%, after which the decline continued but at a

slower pace (Figure 5.23).
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Figure 5.23. Influence of single k-weekly, and a range from 1 to k-weekly lagged time series on MAPE of one day-ahead

forecasting of power demand in Ireland, using linear regression.
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5.4. Investigation into Daily Lagged Power Demand Time Series

To assess the potential benefits of using daily lagged time series over weekly ones in ODADF, an

investigation was undertaken to identify the values with the highest correlation (Figure 5.24).
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Figure 5.24. Correlation between actual and daily lagged power demand in Ireland.

To estimate the influence of single k-daily, and a range from 2 to k-daily lagged time series on

ODADF MAPE, Linear Regression was used. While MAPE from k-days ago demonstrated weekly

seasonality, it decreased steadily for the range of 2 to k daily lagged values, with increasing value of k.

A noticeable plunge in the MAPE was observed around value k=7, reaching MAPE in range 3.12-3.58%,

after which the decline continued but at a slower pace (Figure 5.25). Therefore, using daily lagged time

series would not be more beneficial than the weekly ones.
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Figure 5.25. Influence of single k-weekly, and a range from 1 to k-weekly lagged time series on MAPE of one day-ahead

forecasting of power demand in Ireland, using linear regression.
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5.5.

Investigation into Moving Window Size of Power Demand Time Series

To determine the optimal window size for ODADF using Moving Window (MW) approach, an

investigation was carried out using Linear Regression (Figure 5.26). MAPE decreased steadily with

increasing value of k. A noticeable plunge in the MAPE was observed around value k=7 and k=14,

reaching MAPE in range 2.51-2.80%, and 2.24-2.59%, respectively. Then, the decline continued but at

a slower pace, reaching minimum around k=36, achieving MAPE in range 2.19-2.50%. Further

increasing of k value increased MAPE (Figure 5.26).
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Figure 5.26. Influence of window size on MAPE of forecasting of power demand in Ireland, using linear regression.

5.6. Scaling and Encoding the Data for Modelling

Power demand and temporal features were scaled and encoded (Table 5.4) as described in

Chapter 3. The conversion approach was validated by correlation between scaled power demand and

encoded features (Figure 5.27).

Variable Original Range Conversion Converted
Range
Power Demand 1684.25 to 5517.75 Scaling by division by 5517.75 0.3052 to 1.0000
Day of the Week Monday to Sunday One-Hot Encoding [1,0,0,0,0,0,0]
Observed Holiday Yes or No Numerical Encoding lor0
Max
Day of the Year 1 to 365 (366) :
Q
i {=
Cyclical :D 2 [1to1,-1to 1]
Encoding S
Hour of the Day Oto23 .
Min Sine

Table 5.4. Scaling and encoding the data for modelling.
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Figure 5.27. Correlation between scaled power demand and extracted and encoded temporal features
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5.7. Evaluation of Baseline Models

Baseline models, described in Chapter 3, were considered for ODADF as a starting point and
reference for comparison with more complex models developed in experimentation phase of the
research. The results, being MAPE per day type, month, and hour, as well as visualisation of baseline

models predictions against actual demand for year 2019, were shown on Figures 5.28-5.29.
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Figure 5.28. Forecast of power demand in Ireland for year 2019 by baseline models (1-3).
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Forecast for 2019 by Similar Day - One Week Ago: MAPE and Power Demand
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Figure 6.17. Forecast of power demand in Ireland for year 2019 by baseline models (4-7).
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5.8. Defining Supervised Learning Problems for Similar Day and Moving Window Methods

Supervised learning problems were defined from power demand time series and temporal
features by SD approach, utilising historical weekly lags of the power demand (Table 5.5), and MW
approach, utilising continuous historical demand values (Table 5.6). In practice, ODADF is conducted
several hours in advance. Therefore, to avoid the double forecasting phenomenon, partially available

current-day data was excluded from consideration.

R_‘:;:;d Independent Variable X [\)/?:;t::r;t
Index Temporal Variables Lagged Power
In Holidays | Day of Week | Day of Year | Hour of Day Power Demand Values Demand
Hours H DoW DoY HoD Y
[Y(tK-n1-7-24-h, Y(tK—n2-7-24-h,
ey Y(tK—nL-7-24-h]
where:
tx=totk-h H(tk) DoW/(tx) DoY(tk) HoD(t) k=1, 2, ... (record index) Y(tk)
L: number of weekly lags
ty: timestamp k in hours
ni, N, ... N.:
number of lags in weeks

Table 5.5. Supervised learning problem definition for similar days approach (univariate time series of power demand in
Ireland and temporal features).

Record . Dependent
Time Independent Variable X Variable Y
Index Temporal Variables Power

Moving Wind f
In Holidays | Day of Week | Day of Year | Hour of Day Pow‘Je‘IrIrl‘)gem;rr‘ldo\‘;;I(:Jes Demand
Hours H DoW DoY HoD Y

[Y(te-(24-(1+ws)-1)h,
Y(tK-(24'(1+W5)-2)'h,

vy Y(tK-(24'(1+W5)-W5)'h]

te=torkeh H(t) DoW(tq) Do¥(t) HoD(t) where: k=1, 2, ... (record index) Y(t)
ws: window size in days
current day not considered

Table 5.6. Supervised learning problem definition for moving window approach (univariate time series of power demand in
Ireland and temporal features).

5.9. Conclusion

In this chapter, supervised learning problems for SD and MW approaches were defined, and

potential weekly lags and window size were identified, respectively.

Firstly, DST distortion was removed from power demand time series, and missing values and
outliers were replaced using appropriate methods, which were proved to be valid by comparison of

distributions from power demand datasets before and after the process.
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Secondly, descriptive statistics revealed possible daily, weekly and annual seasonality of power
demand in Ireland, disrupted by Covid-19 lockdown in Ireland in 2020. Furthermore, similarities and
differences between daily patterns were identified. Subsequently, inferential hypotheses tests
revealed that power demand time series was not normally distributed, had positive trend, was first-
order difference stationary and, despite visible daily and weekly patterns, its seasonality was not
statistically significant. Therefore, Auto-Regressive models were not expected to perform well for

ODADF in Ireland.

Then, baseline models were used as starting point and reference for more complex models
developed in experimentation phase of the research, achieving 90.7-553.9MW, 128.0-647.2MW, and
2.71-16.60% for MAE, RMSE, and MAPE, respectively.

Finally, power demand and temporal features were scaled and encoded. The day of the year and
hour of the day variables were converted to cyclical format, to highlight their seasonality, while the
day of the week variable was encoded to sparse vector format. The validity of that approach was

confirmed through a correlation study.
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6. Multivariate Data Preparation

6.1. Weather Factors’ Data Cleaning - Daylight-Saving Time Distortions Removal

Weather factors time series, affected by DST, were shifted back by one hour to restore their

original continuity, and one-hour gaps in autumn were filled using monthly mean values.

6.2. Exploratory Data Analysis: Weather Factors’ Time Series

Descriptive statistic for three weather factors from twenty-two weather stations in Ireland, for
years 2014-2022 was performed for all, and given for three exemplary weather stations in Table 6.1.
Considering the variations in the values of respective factors among weather stations, and to mitigate
the challenges posed by high dimensionality of data, potential solutions for identifying representative

stations were outlined in section 6.4.

Weather Athenry Shannon Airport Valentia Observatory

station Temperature Relative Wind Speed Temperature Relative Wind Speed Temperature Relative Wind Speed

°C Humidity % KMH °C Humidity % KMH °C Humidity % KMH

Mean 10.0 83.5 13.4 10.7 81.9 16.6 11.3 80.6 17.8

6 4.9 11.6 7.4 4.8 12.3 9.7 3.9 11.4 10.4

Min -8.0 27.0 0.0 -4.8 24.0 0.0 -4.9 22.0 0.0

Median 10.1 87.0 13.0 10.8 85.0 14.8 11.3 82.0 16.7

Max 30.1 100.0 61.1 31.5 100.0 96.3 27.9 100.0 88.9

Table 6.1. Descriptive statistics of weather factors from three exemplary weather stations in Ireland for years 2014-2022

6.3. Correlation Between Lagged Weather Factors and Power Demand

To evaluate correlations between weather factors and power demand time series, full datasets
were plotted individually for power demand, temperature, relative humidity and wind speed from all
twenty-two weather stations, with colour-coded seasons (Figure 6.1). They revealed that all weather
factors were correlated with power demand, with temperature and wind speed showing a negative

correlation, while relative humidity demonstrated a positive correlation.

To estimate correlations between lagged weather factors and power demand time series,
correlation plots for each factor against the value of lag in hours were plotted, for each weather
station (Figure 6.2). All factors exhibited daily periodicity, with peak values occurring at a lag of 15+24'k
hours, for positive integer k values. Taking into consideration, that data from previous day is not fully
available at the time of forecasting, the first possible lag value of 39-hours was selected for further
analysis. For lagged temperature and wind speed, the highest correlation value was observed with
data from Mount Dillon, whereas for lagged relative humidity, Gurteen's data exhibited the highest

correlation.
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Comparison of Actual_Demand_MW, Temperature_C, Relative_Humidity_% and Wind_Speed_KMH
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Figure 6.1. Comparison of power demand, temperature, relative humidity and wind speed time series in Ireland 2013-2023
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Figure 6.2. Correlation between power demand and lagged weather factors, such as temperature, relative humidity and
wind speed time series in Ireland from 2013 to 2023



6.4. Representative Weather Stations

Given the infeasibility of incorporating data from twenty-two weather stations into the research,
a study was undertaken to identify representative stations for each weather factor. Three approaches
were proposed, such as virtual stations created by Linear and Lasso Regression, as well as the most

important single weather station revealed by Lasso Regression and correlation study.

6.4.1. Virtual Weather Station Created by Linear Regression of all Real Stations

Linear Regression was used to create the first virtual weather station, where individual weather
factors was the sole explanatory variable for power demand. Absolute values of coefficients (Figure

6.3) were normalised using MinMax scaler, and then used to predict respective factors (Figure 6.4).
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Figure 6.3. Normalised coefficients of linear regression used to create virtual weather station
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Figure 6.4. Temperature, relative humidity and wind speed from virtual weather station created with linear regression of
respective factors from all twenty-two real weather stations in Ireland.
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6.4.2.  Virtual Weather Station Created by Lasso Regression of Selected Real Stations

Lasso Regression was used to create the second virtual weather station. Value of

hyperparameter alpha was increased until the number of non-zero coefficients reached specified

values (Figure 6.5). Absolute values of coefficients were normalised and used for prediction of factors.
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Figure 6.5. Influence of hyperparameter alpha on the number of non-zero coefficients of lasso regression for temperature,

relative humidity and wind speed.

6.4.3. Single Real Weather Station and Validation of Results

Validation of the results was performed by correlation study between actual demand and lagged

weather factors for each solution (Figure 6.6), comparison of individual distributions (Figure 6.7), and

correlation plots (Figure 6.8). Taking into consideration results from Section 6.4, Mount Dillon was

selected as single real weather station, which could represent weather factors for the whole Republic

of Ireland. Table 6.2 summarises weather factors from all representative weather stations.

Weather Stations

Temperature °C

Relative Humidity %

Wind Speed KMH

Virtual Linear Regression

Virtual_LR_22_ T

Virtual_LR_22_H

Virtual_LR_22_ W

Virtual Lasso Regression

Virtual_Lasso2_T

Virtual_Lasso5_H

Virtual_Lasso2_W

Single Real Station

MountDillon_T

MountDillon_H

MountDillon_W

Table 6.2. Summary of representative weather stations in Ireland for power demand forecasting
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Correlation Between Power Demand and 39 Hours Lagged Weather Factors
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Figure 6.6. Correlation between power demand and 39-hours lagged weather factors.
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Figure 6.7. Kernel Density Estimate for temperature, relative humidity and wind speed from virtual weather stations
created using linear and lasso regression, single real weather station and all twenty-two weather stations.
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Figure 6.8. Correlations between power demand and temperature, relative humidity and wind speed from virtual weather
stations created using linear and lasso regression.
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Figure 6.9 depicted the time series of temperature, relative humidity, and wind speed from the

approaches achieving the highest correlation with power demand.
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Figure 6.9. Temperature and relative humidity from virtual weather station created with lasso regression of two and five
real weather stations, respectively. Wind speed from Mount Dillon real weather station in Ireland.

6.5. Feature Selection for Potential Base-learners

6.5.1. Feature Selection for Similar Day Approach

Weekly lags with correlation above 90%, temporal and weather’s features were considered to
create supervised learning problem for SD approach. Investigation into feature importance was

performed to select the best ones, utilising methods such as Forward (Figure 6.10) and Backward

(Figure 6.11) Selection Regression, Lasso Features Selection Regression (Figure 6.12).

MAPE 2015-2019 for (corr.>90%) Weekly Lags Features: Forward Selection Regression
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Figure 6.10. Features selection for similar days approach using forward selection regression.
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MAPE 2015-2019 for (corr.>90%) Weekly Lags Features: Backward Selection Regression
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Figure 6.11. Features selection for similar days approach using backward selection (elimination) regression.
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Taking above results into consideration, the final set of twenty-nine features for SD approach was

selected to include: historical power demand 1-5, 48-52, and 54-57 weeks ago, holidays, days of the

week, day of the year, hour, as well as temperature, relative humidity and wind speed, lagged by 39-

hours, from virtual weather station created with Linear Regression.

6.5.2.

Feature Selection for Moving Window Approach

Investigation into feature importance for window sizes of seven, fourteen and thirty-five days

(the new minimum MAPE) was performed (Figure 6.14), for three representative weather stations, to

select features achieving the optimal value of MAPE for MW approach (Figure 6.15).

MAPE for Linear Regression for Moving

Window of size k Days (with Features)

554

5.0 4

4.5

4.0

351

MAPE in %

3.04

2.59

m— 2015 m— 2018 = 2021
2016 — 2019 — 2022
— 2017 — 2020 - AVG

14 Days

o

:ZEZI‘ MAPE 2.56%
:ZCZZ‘ MAPE 2.50%
|AVG: MAPE 2.67%
I

Wwind.
15: MAPE 2.5
2016: MA
2017: MA
2018: MA

AVG: MAPE 2.45%

v Size 135 Days window Size

12015: MAPE 2.42
12016: M
12017:

12018: §
12019: MAPE 2.
12020: MAPE 2.
12021: MAPE 2.28

o

:ECZZ‘ MAPE 2.16%
1AVG: MAPE 2.36%
]

Figure 6.14. Influence of window size on MAPE of forecasting of power demand in Ireland, using linear regression.

Figure 6.15. Features selection for moving window approach using forward selection regression.
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Taking above results into consideration, the final set of features for MW approach was selected
to include: moving window of historical power demand with size of thirty-five days, holidays, day of

the year, hour, as well as temperature, relative humidity and wind speed, lagged by 39-hours, from

virtual weather station created with Lasso Regression.
6.6. Redefining Supervised Learning Problems by Including Weather Factors

Supervised learning problems, defined in section 5.7, were amended to include features selected

in section 6.5 for SD (Table 6.3), and MW approaches (Table 6.4).

. Dependent
R:it;:;d Independent Variable X Variable Y
Temporal Variables Weather Variables
Index - - Power
In Holidays, Day of Week, Temperature, Relative Lagged Demand
Hours Day of Year, Hour of Day Humidity, Wind Speed Power Demand Values v
H, DoW, DoY, HoD T, RH, WS
[T(te-39h), [Y(tk'm'zz(ﬁr', Y%:ﬁf 2
RH(t-39-h), e TUKTL
WS(t-39-h
[H(tk), DoW(tx), S{t-39)] k=1, 2, ... (record index)
te=totkeh DoY(tk), HoD(tk) L: number of weekly lags Y(t)
Kl K Virtual weather station L exy &
. tx: timestamp k in hours
created using
Linear Regression N N2, oo ML
1..5,48..52, 54...57 (weeks)

Table 6.3. Supervised learning problem definition for similar days approach, including weather factors
Record . Dependent
Time Independent Variable X Variable Y
Index Temporal Variables Weather Variables Power
In Holidays, Day of Year, Temperature, Relative Moving Window of Demand
Hours Hour of Day Humidity, Wind Speed Power Demand Values Y
H, DoY, HoD T, RH, WS
. [Y(te-(24-(1+ws)-1) h,
[T(t39h), Y(ty-(24-(1+ws)-2) b,
RH(tc-39), Y(te-(24-(1+ws)-ws)h]
WS(t¢-39-h)] o UK SIS
te=torkeh [H(t«), DoY(t), HoD(t)] . . where: k=1, 2, ... (record index) ¥t
Virtual weather station . N
. ws=35 (window size in days)
created using
Lasso Regression current day not considered

Table 6.4. Supervised learning problem definition for moving window approach, including weather factors.

6.7. Conclusion

In this chapter, the final sets of features were separately selected for SD and MW approaches,
and the supervised learning problems were amended, accordingly. DST distortion was removed from
weather factors time series, and correlation between lagged factors and power demand was
evaluated. Representative weather stations for each weather factors were found to be valid by

correlation study. For SD approach, the LR-based virtual station excelled, while Lasso Regression was

optimal for the MW method.
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7. Experimentation with Potential Base-Learners of Ensemble Learning Models

7.1. Architectures and Hyperparameters Tuning of Base-Learners

Architectures of considered Deep Learning (DL)

models were shown

in Table 7.1.

Hyperparameters of all potential base-learners with their values ranges, and their best values found

by Bayesian optimisation with 10-fold cross-validation were shown in Table 7.2.

Model architecture
Group .
of layers LSTM Model CNN Model Inclusion
Description Remarks Description Remarks
ConvolutionallD filters x1
BatchNormalisation -
! LSTM MaxPoolinglD kernel_size Obligatory
return_seq=False Dropout cnn_dropout
) LSTM for last layer ConvolutiorTall-D filters x2/4, respectively
BatchNorm'allsatlon - Optional
MaxPoolinglD kernel_size
3 LST™ Dropout cnn_dropout
Dense dense_units Flatten Co
BatchNormalisation - Dense dense_units
4 BatchNormalisation - Obligatory
Dropout dense_dropout
Dense L unit Dropout dense_drppout
Dense 1 unit
Table 7.1. Deep learning potential base-learners’ architectures.
Hyperparameters
Regressor Data Best Values
Shape Name Range of Values Remarks Similar Moving
Day Window
Linear fit_intercept False, True - False False
. False True
Ridge - § ’
fit_intercept False, True - 2.17-10* 4.82'10*
Lasso alpha 10°...10° logarithmic scale True True
1.3810* 2.5810*
kernel linear, rbf - linear linear
SVM C 10°...10° logarithmic scale 2.23.10* 1.51
2D gamma 10°...10¢ logarithmic scale 9.10-10* 241103
epsilon 10°...10¢ logarithmic scale 1.99-10* 3.30110°3
n_estimators 10...250 - 90 210
GBM max_depth 10...250 - 100 60
learning_rate 10°...10* logarithmic scale 3.64:10* 4.69.1072
hidden_layer_sizes (dg,)...(d1, d2) dy, d2=1...1024 (238, 47) (249, 18)
MLP learning_rate constant, invscaling, adaptive - constant invscaling
batch_size 1,24,72,168 - 24 24
max_iter 25, 50, 100 - 100 25
no_lstm_layers 1,2,3 - 1
Istm_units 1..1024 - 43
dense_units 1..1024 - 58
LSTM dense_dropout 0..0.5 - 3.68102
batch_size 1,24,72,168 - 24
learning_rate 10°...101 logarithmic scale 2.91:10%
epochs 25, 50, 100 - 25 not
performed
3D no_cnn_layers 1,23 - 1 for moving
filters 1..256 1t layer 20 .
kernel_size 2.7 - 3 window
cnn_dropout 0..0.5 - 9.98107 approach
CNN dense_units 1..1024 - 236
dense_dropout 0..0.5 - 7.60-10*
batch_size 1,24,72,168 - 24
learning_rate 10°...10* logarithmic scale 1.86103
epochs 25, 50, 100 - 50

Table 7.2. Base-learners hyperparameters and their values selection, and their best values found by Bayesian optimisation.
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7.2. Evaluation of Similar Day Approach Based Base-Learners

7.2.1. Similar Day Approach Baseline Base-Learners

Linear Regression was used for SD - one week, one year (52 weeks) and range 1-52 weeks ago -

to get adjusted ODADF in Ireland in year 2019. Their evaluation was shown on Figure 7.1.
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Figure 7.1. Forecast of power demand in Ireland for year 2019 by adjusted similar days one week, one year (52 weeks) and
range 1-52 weeks ago, using linear regression.
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7.2.2. Similar Day with Temporal and Weather Features Approach Base-Learners

Evaluation of machine and deep learning models, described in previous section, for ODADF in

Ireland in year 2019, was shown on Figures 7.2-7.3.
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Forecast for 2019 by Similar Day - SVM Regression of Top Features: MAPE and Power Demand
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Figure 7.2. Forecast of power demand in Ireland for year 2019 by linear, ridge, lasso and SVM regression.
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Forecast for 2019 by Similar Day - Gradient Boosting Regression of Top Features: MAPE and Demand
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Figure 7.3. Forecast of power demand in Ireland for year 2019 by GBM, MLP, CNN and LSTM regression.

64



7.3. Evaluation of Moving Window Approach Based Base-Learners
7.3.1. Moving Window Approach Baseline Base-Learners

Evaluation of machine learning models for three sizes of univariate MW, described in Section

6.5.2, for ODADF in Ireland in year 2019, was shown on Figure 7.4.
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Figure 7.4. Forecast of power demand for year 2019 by linear regression for moving window size of 7, 14 and 35 days.

7.3.2. Moving Window with Temporal and Weather Features Approach Base-Learners

Evaluation of machine learning models for MW approach with temporal and weather features,

described in previous section, for ODADF in Ireland in year 2019, was shown on Figures 7.5-7.6.
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Forecast for 2019 by Moving Window (35D) - Linear Regression of Top Features: MAPE and Power Demand
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Forecast for 2019 by Moving Window (35D) - Ridge Regression of Top Features: MAPE and Power Demand
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Figure 7.5. Forecast of power demand in Ireland for year 2019 by linear, ridge, lasso and SVM regression.



Forecast for 2019 by Moving Window - Gradient Boosting Regression of Top Features: MAPE and Demand
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Figure 7.6. Forecast of power demand in Ireland for year 2019 by GBM and MLP regression.

7.4. Final Selection of Base-Learners

Following analysis of potential base-learners’ results from sections 7.1-7.3, twenty out of twenty-
seven models (Figure 7.7, Table 7.3), achieving the lowest MAPE for ODADF in year 2019, were
selected as base-learners for further experimentation with ensembles. Ranking of the twenty base-

learners as function of day, month and hour, based on MAPE for year 2019 was shown on Figure 7.8.

Ranking of Base Models on MAPE for 2019
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Figure 7.7. Ranking of base-learners on MAPE for 2019.
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Model Performance metrics for year 2019
Name Description (WF=weather features) MAE in MW RMSE in MW | MAPEin%

SD_F_CNN SD-based CNN with WF 72.8 97.3 2.226
SD_LR_1_52_Weeks_Ago SD-based LR of 1-52 weekly lagged demand 73.8 103.9 2.231
SD_F_LSTM SD-based LSTM with WF 75.6 100.4 2.320
SD_F_LgtGBM SD-based GBM with WF 77.0 104.0 2.330
SD_F_LinReg SD-based LR with WF 76.4 105.6 2.334
SD_F_RidgeR SD-based Ridge Regression with WF 76.4 105.6 2.334
SD_F_SVMReg SD-based SVM with WF 76.9 107.6 2.342
MW_35D_F_LgtGBM MW-based GMB with WF 79.4 114.2 2.370
MW_35D_F_SVMReg MW-based SVM with WF 79.3 121.8 2.387
SD_F_LassoR SD-based Lasso Regression with WF 78.6 109.1 2.414
MW_35D_F_RidgeR MW-based Ridge Regression with WF 82.7 120.8 2.484
MW_35D_F_LinReg MW-based LR with WF 83.0 122.0 2.491
MW_LR_36_Days_Window MW-based LR, window size 36 days 83.3 122.2 2.497
SD_F_MLPerc SD-based MLP with WF 83.6 109.1 2.563
MW_LR_14_Days_Window MW-based LR, window size 14 days 86.3 127.1 2.585
SD_LR_52_Weeks_Ago SD-based LR of 52 weeks ago 88.2 126.7 2.637
SD_52_Weeks_Ago SD 52 weeks ago 90.7 128.0 2.706
MW_LR_7_Days_Window MW-based LR, window size 7 days 93.1 139.0 2.798
MW_35D_F_LassoR MW-based Lasso Regression with WF 102.8 153.0 3.079
MW _35D_F_MLPerc MW-based MLP with WF 108.1 153.3 3.262
SD_1_Week_Ago SD 1 week ago 118.5 190.0 3.567
SD_LR_1_Week_Ago SD-based LR of 1 week ago 118.7 190.0 3.571
TBATS Trigonometric seasonal decomposition of time series 172.8 227.0 5.119

NBEATS Neural basis expansion analysis for time series 188.5 246.9 5.576
Last_Year_Mean Mean value of previous year 514.8 603.6 16.468
Historical_Years_Mean Mean value of previous years 547.8 639.6 16.522
Naive_Last_Year_Value Last value seen in previous year 553.9 647.2 16.601

Table 7.3. Performance metrics for potential base-learners forecasting power demand in Ireland for year 2019. Twenty
base-learners, selected for further experimentation with meta-learners of ensembles, were marked in grey.
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Figure 7.8. Ranking of 20 base-learners as function of day, month and hour, based on MAPE for year 2019.
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Comparison of distributions, forecasted by base-learners and actual power demands, for year

2019 was shown on Figure 7.9. As power demand was not normally distributed, non-parametric

Kolmogorov-Smirnov test was used to investigate whether forecasted and actual demand, in pairs,

were from the same distribution, with the null hypothesis that two samples were from the same

distribution. Results were shown in Table 7.4.

Comparison of Forecasted by Base Learners and Actual Demand distributions for Year 2019

mmmm Actual_Demand_MW === SD _F_LinReg MW_35D_F_SVMReg === MW_LR_36_Days_Window
SD_F_CNN SD_F_RidgeR === SD_F_LassoR SD_F_MLPerc
* SD_LR_1_52_Weeks_Ago SD_F_SVMReg MW_35D_F_RidgeR === MW_LR_14_Days_Window
= SD_F_LSTM MW_35D_F LgtGBM = == MW_35D_F_LinReg SD_LR_52_Weeks_Ago
SD_F_LgtGBM

MW_LR_7_Days_Window
MW_35D_F_LassoR
MW_35D_F_MLPerc

= SD_LR_1_Week_Ago

Density

1500 2000 2500 3000
Actua

3500 4000 4500
|_Demand_MW

5000

Figure 7.9. Comparison of forecasted by base-learners and actual power demand distributions for Year 2019.

Samples of predictions of below

base-learners and actual demand in 2019

were from the same distributions were from different distributions
SD_LR_1_52_Weeks_Ago SD_F_CNN
MW_35D_F_LgtGBM SD_F_LSTM
MW_35D_F_SVMReg SD_F_LgtGBM
MW_35D_F_RidgeR SD_F_LinReg
MW_35D_F_LinReg SD_F_RidgeR
MW_LR_36_Days_Window SD_F_SVMReg
MW_LR_14_Days_Window SD_F_LassoR
SD_LR_52_Weeks_Ago SD_F_MLPerc
MW_LR_7_Days_Window MW_35D_F_LassoR
SD_LR_1_Week_Ago MW _35D_F_MLPerc

Table 7.4. Results of Kolmogorov-Smirnov test for predictions of base-learners and actual power demand in 2019.

7.5. Percentage Share of Base-Learners in the Best Hourly Predictions for Years 2015-2019

The percentage share of base-learners in the best hourly predictions was shown by year (Figure

7.10), and by day type (Figure 7.11).

Percentage Share of each Base Learners in Best Hourly Prediction for 2015-2019 by Year
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Percentage Share of each Model in Best Hourly Prediction for 2015-2019 by Day Type
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Figure 7.11. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by day type.

7.6. Discussion Regarding Results of the Experimentation with Base-Learners

Experimentation with potential base-learners revealed significant variations in the performance
of models. For example, MAE, RMSE and MAPE varied 72.8-118.8MW, 97.3-190.0MW, and 2.226-
3.571%, respectively. While base-learners trained on SD dataset performed better on average metrics
than those trained on MW dataset, all models showed fluctuations in their MAPE across different days

of the week, months and hours. Therefore, there was no single best or worst model in all categories.

The lowest MAPE was observed on Thursdays and Saturdays, with GBM (MW) model performing
the best. However, almost all models underperformed on Mondays and holidays occurring on
weekdays. While similar day CNN model achieved the lowers average MAPE, other models, such as
Linear Regression of 1-52 weeks ago, SVM (MW), Linear Regression (SD), GBM (SD), shared the first
place for Monday to Wednesday, Thursday to Saturday, Sunday, and holidays occurring on weekdays,
respectively. Base-learners predicted specific days of the week better than others, based on the
approach of dataset creation. MW-based models generally performed better on Thursdays, Fridays,

and Sundays. Conversely, SD-based models had superior performance on the other days.

Examining monthly performance revealed that the lowest MAPE was observed in July, with SVM
(SD) emerging as the top performer. On the other hand, December, April, and January yielded the
least favourable results. The best-performing models varied from month to month, and no single
model consistently underperformed across all months. Notably, LSTM (SD) was the only model to excel

in two consecutive months: April and May. Furthermore, while MW-based models generally achieved
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better results for February, March, September and November, the SD-based models had superior

performance in the other months.

Upon analysing hourly performance, it was evident that the MAPE was at its lowest at 9 a.m. and
8 p.m., with CNN (SD) standing out as the best performer during these hours. Conversely, the period
from 5 a.m. to 9 a.m. consistently showed less-promising results, with 7 a.m. identified as the most
challenging hour. The model rankings experienced notable shifts between 4 a.m. to 7 a.m. and again
from 8 p.m. to 11 p.m. Between 10 p.m. and 4 a.m., GBM (MW) took the lead, closely followed by
SVM (MW). At 5 a.m., the Linear Regression of 1-52 weeks ago was the top-performing, with SVM
(MW) right behind. By 6 a.m., LR (SD) became the model of choice, with Ridge (SD) as the runner-up.
Lastly, from 7 a.m. to 9 p.m., CNN (SD) led the pack, but between 7 a.m.to 5 p.m., LSTM (SD) and GBM

(SD) closely followed it, with the Lasso Regression (SD) and SVM (MW) also making a significant impact.

Finally, while comparison of predictions by base-learners and actual power demand in 2019
distributions looked similar visually, inferential statistics tests revealed that, majority of moving
window base-learners’ predictions, were from the same, and majority of similar day models, were

from different than actual demand distribution.

7.7. Conclusion

The diverse performance of various base-learner models across different time frames, be it days
of the week, months, or specific hours, underscored the value of leveraging a variety of models when
constructing ensemble systems. No single model consistently excelled or faltered in every scenario.
This variability reinforced that a diverse set of models could complement each other's strengths and
mitigate each other's weaknesses, potentially leading to a more robust and accurate ensemble

prediction in ODADF.
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8. Experimentation with Integration Methods of Base-Learners into Ensemble Learning Models

8.1. Architectures of Ensembles

Three stacking approaches to obtain ensemble predictions were investigated: heuristic rules,

optimal model classification-based predictors, and regression-based base-learners’ predictions.

Heuristic rules were baseline of ensemble modelling. Five following techniques were used:

e mean and median of all base-learners’ predictions,

e base-learner with lowest MAPE at the same time one day, one week, and one year (52 weeks)
ago was selected to make the prediction.

Classification-based ensembles used classifier as meta-learner to predict which base-learner
provided the best estimate for the current time instant based on explanatory variables, such as
temporal and weather factors. The output of meta-learner was then interpreted as probability that
each base-learner yields the best prediction. Classifiers such as logistic regression, SVM, GBM and MLP
were considered as classification meta-learners. The product of probability of base-learners and their

prediction value was then taken as ensemble prediction of ODADF in Ireland in 2019.

Finally, regression-based ensembles, considering limited and unlimited number of base-learners’
predictions, with LR, SVM, GBM and MLP as meta-learners were examined. Base-learners' predictions

were used as the independent variable for meta-learners to forecast ODADF in Ireland for 2019.

8.2. Hyperparameters Tuning of Ensembles’ Meta-Learners

Architectures and hyperparameters of considered meta-learners of ensembles, with their values
ranges, and their best values found by Bayesian optimisation with 10-fold cross-validation were shown

in Tables 8.1-8.2.

. Hyperparameters
Classifying Data Best Values
Meta-learner Shape Name Range of Values Remarks
Logistic weather_station linear, lasso, Mount Dillon - linear regression
Regression fit_intercept False, True - True
Classifier C 10©...10° logarithmic scale 2.88103
weather_station linear, lasso, Mount Dillon - linear regression
SVM kernel linear, rbf - rbf
Classifier C 10¢...10° logarithmic scale 7.52:101
gamma 10°...10* logarithmic scale 6.05:102
weather_station linear, lasso, Mount Dillon - lasso regression
GBM 2D n_estimators 10...500 - 130
Classifier max_depth 10...500 - 260
learning_rate 10°...101 logarithmic scale 3.08:10*
weather_station linear, lasso, Mount Dillon - lasso regression
MLP hidden_layer_sizes (dy,)...(dy, d2) d;, d;=1...1024 (2, 49)
Classifier learning_rate constant, invscaling, adaptive - invscaling
batch_size 1,24,72,168 - 24
max_iter 25, 50, 100 - 25

Table 8.1. Classifying meta-learners’ hyperparameters and their values selection, and their best values.
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Regressor Hyperparameters
Meta- Data Best Values
learner Shape Name Range of Values Remarks Selected Al
Linear fit_intercept False, True - True (@ True
kernel linear, rbf - linear () rbf
SVM C 10%...103 logarithmic scale 5.22:101 5.61:107
Regressor gamma 10°...10t logarithmic scale 7.59-101 3.34101
epsilon 10°...10% logarithmic scale 1.70.103 1.82:103
n_estimators 10...500 - 230 290
RegGrz::ion 2D max_depth 10...500 - 440 500
learning_rate 10°...101 logarithmic scale 417.102 3.55-1072
hidden_layer_sizes (dy,)...(d1, d3) dy, d, =1..1024 (198, 48) @ (250, 21)
MLP learning_rate constant, invscaling, adaptive - invscaling adaptive
Regression batch_size 1,24,72,168 - 24 24
max_iter 25, 50, 100 - 25 100

A combination of up to 6 base-learners was selected in the first approach:
(a) SD_F_SVMReg, SD_F_LgtGBM, SD_F_MLPerc, MW_LR_14_Days_Window, MW_35D_F_LinReg, MW_35D_F_LassoR
(b) SD_F_LinReg, SD_F_LassoR, SD_F_LgtGBM, MW_LR_14_Days_Window, MW_35D_F_RidgeR, MW_35D_F_LassoR
(c) SD_F_LassoR, SD_F_SVMReg, SD_F_LgtGBM, SD_F_CNN, MW_LR_14_Days_Window, MW_35D_F_SVMReg
(d) SD_F_LinReg, SD_F_LassoR, SD_F_LgtGBM, SD_F_MLPerc, MW_LR_7_Days_Window, MW_35D_F_LassoR

Table 8.2. Regression meta-learners’ hyperparameters, their values selection, and their best values.

8.3. Evaluation of Heuristic Rule-Based Ensembles

Evaluation of heuristic rule-based ensembles, described in Chapter 3 and Section 8.1, for ODADF

in Ireland in year 2019, was shown on Figures 8.1-8.2.
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Forecast of power demand in Ireland for year 2019 by heuristic rule-based ensembles (1-2).
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Forecast for 2019 by SD - Heuristic Ensemble, Best Base Learners One Day Ago: MAPE and Demand
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Figure 8.2. Forecast of power demand in Ireland for year 2019 by heuristic ensembles (3-5).

8.4. Evaluation of Classification-Based Ensembles

Evaluation of classification-based ensembles, described in Chapter 3 and Section 8.2, for ODADF

in Ireland in year 2019, was shown on Figure 8.3.
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Forecast for 2019 by Classification Ensemble, Logistic Regression BL Based Prediction: MAPE and Demand
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Figure 8.3. Forecast of power demand in Ireland for year 2019 by classification-based ensembles.
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8.5. Evaluation of Regression-Based Ensembles

Evaluation of regression-based ensembles, described in Chapter 3 and Section 8.2, for ODADF in
Ireland in year 2019, was shown on Figure 8.4.
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Forecast for 2019 by Regression Ensemble, Linear Regression of all Base

Learners: MAPE and Demand
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Figure 7.10. Forecast of power demand in Ireland for year 2019 by regression-based ensembles.
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Figure 8.4.

Forecast of power demand in Ireland for year 2019 by regression-based ensembles.
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8.6. Ranking of Base-Learners and Ensembles for Year 2019

Ranking of base-learners and ensembles from Sections 8.3-8.5, based on average MAPE for
ODADF in Ireland in year 2019, was presented on Figure 8.5. More performance metrics achieved by

ensemble learning models were presented in Table 8.3. The classification-based ensembles were the

winners of the study.
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Figure 8.5. Ranking of potential base-learners and ensembles based on average MAPE for one day-ahead power demand in

year 2019 in Ireland.

Model PERFORMANCE METRICS FOR YEAR 2019
Name Description . MAE .RMSE MAPE
in MW in MW in %
ENS_CLA_MLPerc Ensemble with MLP as classification meta-learner 64.1 89.1 1.919
ENS_CLA_SVMClas Ensemble with SVM as classification meta-learner 65.3 92.3 1.960
ENS_CLA_LogRegC Ensemble with Logistic Regression as meta-learner 65.3 92.1 1.960
ENS_CLA_LgtGBMC Ensemble with GBM as classification meta-learner 66.1 94.1 1.985
ENS_HEU_Median_of_BL Heuristic ensemble, median of 20 BL predictions 66.7 95.0 2.009
ENS_HEU_Mean_of_BL Heuristic ensemble, mean of 20 BL predictions 67.3 96.8 2.020
ENS_REG_ALL_MLPerc Ensemble with MLP as regression meta-learner of 20 BL 70.5 95.9 2.096
ENS_HEU_Best_BL_Day_Ago Heuristic ensemble, best predictors one day ago 72.8 105.1 2.199
ENS_REG_ALL_SVMReg Ensemble with SVM as regression meta-learner of 20 BL 74.2 101.0 2.228
ENS_REG_ALL_LgtGBM Ensemble with GBM as regression meta-learner of 20 BL 74.3 101.4 2.235
ENS_REG_ALL_LinReg Ensemble with LR as regression meta-learner of 20 BL 74.6 101.1 2.253
ENS_REG_LgtGBM Ensemble with GBM as regression meta-learner of 6 BL 75.1 102.3 2.261
ENS_REG_LinReg Ensemble with LR as regression meta-learner of 6 BL 75.7 102.4 2.289
ENS_REG_SVMReg Ensemble with SVM as regression meta-learner of 6 BL 75.7 102.2 2.290
ENS_HEU_Best_BL_Year_Ago Heuristic ensemble, best predictors one year ago 78.2 108.3 2.357
ENS_REG_MLPerc Ensemble with MLP as regression meta-learner of 6 BL 81.1 107.9 2.446
ENS_HEU_Best_BL_Week_Ago Heuristic ensemble, best predictors one week ago 83.6 119.6 2.524

Table 8.3. Performance metrics for potential ensembles forecasting power demand in Ireland for year 2019. Classification-
based meta-learners of ensembles, selected for validation were marked in grey.

Figure 8.6 depicted base-learners and ensembles performance as a function of the day of the

week, month, and hour.
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MAPE as function of Day of the Week, Month of the Year, Hour of the Day
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Figure 8.6. MAPE for predictions for 2019 by base-learners (left column) and ensemble learning models (right column) as

function of day of the week (top row), month of the years (middle row) and hour of the day (bottom row).
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Comparison of distributions, forecasted by ensembles and actual power demand, for year 2019
was presented on Figure 8.7. As power demand was not normally distributed, non-parametric

Kolmogorov-Smirnov test was used to investigate whether forecasted and actual demand, in pairs,

were from the same distribution (Table 8.4).

Comparison of Forecasted by All Ensembles and Actual Demand distributions for Year 2019
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Figure 8.7. Comparison of forecasted by ensembles and actual power demand distributions for Year 2019.

Samples of predictions of below ensembles and actual demand in 2019
were from different distributions

ENS_REG_ALL MLPerc
ENS_REG_ALL_SVMReg
ENS_REG_ALL_LgtGBM
ENS_REG_ALL LinReg
ENS_REG_LgtGBM
ENS_REG_LinReg
ENS_REG_SVMReg
ENS_REG_MLPerc

were from the same distributions
ENS_CLA_MLPercC
ENS_CLA_SVMClas
ENS_CLA_LogRegC
ENS_CLA_LgtGBMC
ENS_HEU_Median_of_BL
ENS_HEU_Mean_of_BL

ENS_HEU_Best_BL_Day_Ago

ENS_HEU_Best_BL_Year_Ago

ENS_HEU_Best_BL_Week_Ago

Table 8.4. Results of Kolmogorov-Smirnov test for predictions of ensembles and actual power demand in 2019.
8.7. One Day-Ahead Power Demand Forecasting in Ireland for Year 2019
To visualise the potential of ensemble learning models in ODADF in Ireland, time series of

predictions by the best ensembles, such as classification-based ensemble with MLP and SVM as meta-

learners were compared to the prediction of the best base-learner CNN (SD) and real power demand

in Ireland in 2019 on Figure 8.8.
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on weekdays are marked in pink.

Figure 8.8. One day-ahead power demand forecasting for year



8.8. Discussion Regarding Results of the Experimentation with Architectures of Ensembles

Experimentation with meta-learners of ensembles revealed their more consistent performance
compared to standalone base-learners. For example, MAE, RMSE and MAPE varies 64.1-83.6MW,
89.1-119.6MW, and 1.92-2.52%, respectively. Regression-based ensembles that integrated twenty
base-learner predictions exhibited superior performance compared to those restricted to a limited
number of predictions. This suggested that ensemble models possess the capability to effectively

handle and manage their input.

All classification-based ensembles outperformed other meta-learners and best base-learners.
Ensemble of twenty base-learners, with MLP classifier as meta-learner, achieved the lowest MAPE

1.92%, which was 17.2% improvement in comparison to the best base-learner, CNN (SD) MAPE 2.32%.

Ensemble models utilizing SVM, Logistic Regression, and GBM as meta-learners closely trailed
the leading model, registering MAPE scores of 1.96%, 1.96%, and 1.99%, respectively. Three other
ensembles - two heuristic rule-based ones using median and mean, and a regression-based ensemble
with MLP regressor incorporating twenty base-learner predictions - also surpassed the performance
of the best base-learner. Nevertheless, other ensembles did not achieve this benchmark. Even so, the
ensemble with the lowest performance recorded MAPE of 2.52%, which was not only proximate to
the best base-learner but is also significantly better than the poorest-performing base-learner, which
had a MAPE of 3.57%. Interestingly, classification-based ensembles using Logistic Regression and SVM
as meta-learners performed better with weather factors from the virtual weather station created with

Linear Regression. Meanwhile, ensembles utilizing GBM and MLP favoured the Lasso Regression.

Finally, while comparison of predictions by ensembles and actual power demand in 2019
distributions looked similar visually, inferential statistics tests revealed that, predictions of
classification and heuristic rule-based models, aligned with the distribution of the actual demand,

while those of regression-based ensembles models deviated from actual demand distribution.

8.7. Conclusion

The primary research established a cause-and-effect relationship between ensemble
configurations and ODADF performance metrics. While the performance of ensemble learning models
was negatively impacted by limiting the number of base-learners' predictions, changing the
integration approach, while keeping their number constant, had significant influence on the overall
performance. Therefore, the integration method of base-learners emerged as the primary causal

variable.
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Additionally, the data preparation phase for base-learners was found as important as designing
the ensembles’ architectures. The introduction of the SD and MW approaches amplified the variety of
the base-learners' predictions. Subsequently, incorporating diverse base-learners, with varied
performance across different timeframes, proved successful in ensemble constructions. Ensemble
systems not only harnessed the combined strengths but also mitigated the potential inconsistencies
found in individual base-learners. This was evident from the notably reduced performance variations
among ensembles in comparison to base-learners. The superiority of regression-based ensembles,
especially those that incorporated the full spectrum of twenty base-learner predictions, indicated the

adaptability and self-management capabilities of ensemble models.

Classification-based ensembles, marked significant advancements over other meta-learners and
leading base-learners. Interestingly, even the lesser-performing ensembles not only approached the
proficiency of the best base-learner but also outstripped the performance of the least effective base-
learner. Moreover, while half of the base-learner predictions deviated from the distribution of actual
demand, predictions from classification and heuristic rule-based models aligned with the distribution
of the actual demand. Furthermore, while ensembles using Logistic Regression and SVM as meta-
learners performed better with weather factors from the virtual weather station created with Linear
Regression, ensembles utilizing GBM and MLP favoured the Lasso Regression. Finally, performance of
classification-based ensembles for ODADF in Ireland must be validated on unseen data from years

2021-2022.
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9. Validation of the Experimentation’s Results

Classification-based ensembles, as the best approach revealed in Chapter 8, were refitted and

tested on unseen data. All base-learners, with hyperparameters tuned on training dataset, were fitted

on data from year 2021, and validated on data from year 2022. Subsequently, classification meta-

learners, with hyperparameters tuned on training dataset, were fitted on base-learners predictions

for years 2021-2022, and validated on data from year 2022.

9.1.

Refitting and Evaluation of Base-Learners

Evaluation of twenty base-learners of classification-based ensembles, for ODADF in Ireland in

year 2022, was shown on Figures 9.1-9.6.
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Figure 9.1. Forecast of power demand in Ireland for year 2022 by base-learners (1-3).
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Forecast for 2022 by Similar Day - Linear Regression of Top Features:

MAPE and Power Demand
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Figure 9.2. Forecast of power demand in Ireland for year 2022 by base-learners (4-7).
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Forecast for 2022 by Similar Day - Gradient Boosting Regression of Top Features: MAPE and Power Demand
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Figure 9.3. Forecast of power demand in Ireland for year 2022 by base-learners (8-11).



MAPE %

MAPE %

MAPE %

Forecast for 2022 by Linear Regression of 7 Days Moving Window: MAPE and Power Demand

—
o - w 0 9 8 2 4 e o o n g o
PR " ® B m T = T = - T T =T - SR, "
Ll NI I - - 3 868 338" NonNoNN NN AT A SR ] §
al L DR N s = B |
S

t}\c- \p‘\ ‘@6 é«f’ @0 &\ é\ 95\ QD\' ‘,e Q«;e ‘ﬁ:& §Q~ "x'.i Qe Q\’ v‘)o 4Q 06‘ VOA é/c @'pa§90§90§9e§?e&9m§9e§?e§90 S PP pb .90 .90 _pe .Po .Po .po .po S L PP
Day Type Month

—— Actual Demand ~ —— MW_LR_7_Days_Window

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

Forecast for 2022 by Linear Regression of 14 Days Moving Window: MAPE and Power Demand

~ - . 3 w5 2 0 © o on oM

5 2. ] 580 8 2 o 5

> S o 3o B8 8% R a8 n3883G A

el m T o + T« ~ ~NoH 9 H m T oo
803 8% 03 %A RRRg8nidddd 3l dNT3gens
o pac| T oHoN A P S e L= R R R

C S O L o PR RXR PP 0L Ny SIS I I I I I I I I R R I I O
F I ERXFEF P *«‘&‘%3\’\’@44\9& B R

Day Type Month

—— Actual_Demand ~ —— MW_LR_14_Days_Window

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

Forecast for 2022 by Linear Regression of 36 Days Moving Window: MAPE and Power Demand

~ <

@ @ w @ oM e o m

5 3 o oo Py

"2 9%Rh Qe o m e o o rm oo 9@~ AR T T T ART AN 0 o om Ny
2 N © n K o o o NN ©wooa 2 a6 ddganede S 296 /fF
N L I B | R R ] NoHd S G4 oA

ﬁe@ov@‘ﬁv\v S @ J & SO ] Sy PP PP P PR R PP PSPPSR PP P
FFILL LT FEITTFTOVIF LI E P e e T T8 6T s T o o o 65 e o o 58

Day Type Month Hour

—— Actual_Demand  —— MW_LR_36_Days_Window

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

Forecast for 2022 by Moving Window (35D) - Linear Regression of Top Features: MAPE and Power Demand

MAPE %

= s000
= |
T

2 4000

@ 3000
o

2.91
2.66
2.38
218
310

o~
o
4

185

© S FEOSPL P SO S R - SO R I d Y S I I I s B B R B R B s P I S I
LHFLLEF T TRIEFFTTELL S B R O PP
Day Type Month Hour

—— Actual Demand  —— MW_35D_F_LinReg

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

Figure 9.4. Forecast of power demand in Ireland for year 2022 by base-learners (12-15).



Forecast for 2022 by Moving Window (35D) - Ridge Regression of Top Features: MAPE and Power Demand
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Figure 9.5. Forecast of power demand in Ireland for year 2022 by base-learners (16-19).
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Forecast for 2022 by Moving Window - Multi-Layer Perceptron of Top Features: MAPE and Demand
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Figure 9.6. Forecast of power demand in Ireland for year 2022 by base-learners (20).

9.2. Ranking of Base-Learners for Year 2022

Ranking of the twenty base-learners as function of day, month, and hour, based on MAPE for

ODADF in Ireland in year 2019 was shown on Figure 9.7.
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Figure 9.7. Ranking of 20 base-learners as function of day, month and hour, based on MAPE for year 2022.
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Comparison of distributions, forecasted by base-learners and actual power demand, for year

2022 was shown on Figure 9.8. Non-parametric Kolmogorov-Smirnov test was used to investigate

whether forecasted and actual demand, in pairs, were from the same distribution (Table 9.2).

Comparison of Forecasted by Base Learners and Actual Demand distributions for Year 2022
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Figure 9.8. Comparison of forecasted by base-learners and actual power demand distributions for Year 2022.

Samples of predictions of below base-learners and actual demand in 2022

were from the same distributions were from different distributions
SD_LR_1_52_Weeks_Ago SD_F_CNN
MW_35D_F_SVMReg SD_F_LSTM
MW _LR_36_Days_Window SD_F_LgtGBM
MW_35D_F_LinReg SD_F_LinReg
MW_LR_14_Days_Window SD_F_RidgeR
MW_LR_7_Days_Window SD_F_SVMReg
SD_LR_1_Week_Ago MW_35D_F_LgtGBM
SD_F_LassoR
MW_35D_F_RidgeR
SD_F_MLPerc
SD_LR_52_Weeks_Ago
MW_35D_F_LassoR
MW _35D_F_MLPerc

Table 9.2. Results of Kolmogorov-Smirnov test for predictions of base-learners and actual power demand in 2022.

9.3. Percentage Share of Base-Learners in the Best Hourly Predictions for Year 2022

The percentage share of base-learners in the best hourly prediction was shown by year (Figure

9.9), and by day type (Figure 9.10).
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Figure 9.9. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by year.
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Percentage Share of each Model in Best Hourly Prediction for 2022 by Day Type
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Figure 9.10. Percentage share of base-learners in the best hourly prediction for years 2015-2019 by day type.
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9.4. Refitting and Evaluation of Classification-Based Ensembles

Evaluation of classification-based ensembles, for ODADF in Ireland in year 2022, was shown on

Figures 9.11-9.12.

*

w

o

<

=

D & H al
L REPSE S PR R R
Day Type Month
Actual_Demand ENS_CLA_LogRegC
= se00
EI
.E 4000
©
g
2 3000
2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

I~ A ey A 2
FHSPECF TP FRIFFFTVELLEE P s 5Ty " B
Day Type Month Month
—— Actual Demand —— ENS_CLA_SVMClas
= s000
EI
T a000
[}
£
@ 3000
=}
2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01
Time

Figure 9.11. Forecast of power demand in Ireland for year 2022 by classification-based ensembles (1-2).
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9.5. Validation Ranking of Base-learners and Classification-Based Ensembles for Year 2022

Forecast for 2022 by Classification Ensemble, Light GBM BL Based Prediction: MAPE and Power Demand
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Figure 9.12. Forecast of power demand in Ireland for year 2022 by classification-based ensembles (3-4).
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Ranking of base-learners and ensembles from Sections 9.1-9.4, based on average MAPE for

ODADF in Ireland in year 2022, was shown on Figure 9.13. More performance metrics achieved by the

best twenty ensembles and base-learners were presented in Table 9.3. The classification-based

ensembles were the winners of the study, again.
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Figure 9.13. Ranking of base-learners and ensembles based on average MAPE for one day-ahead power demand in year

2022 in Ireland.
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Model PERFORMANCE METRICS FOR YEAR 2022

MAE in MW RMSE in MW MAPE in %
ENS_CLA_SVMClas 70.3 100.3 1.911
ENS_CLA_MLPercC 70.5 99.9 1.914
ENS_CLA_LogRegC 73.9 105.8 2.006
ENS_CLA_LgtGBMC 74.0 105.5 2.009
MW_35D_F_SVMReg 79.0 117.1 2.152
MW _35D_F_LinReg 78.9 115.7 2.159
MW_LR_36_Days_Window 80.2 116.9 2.191
MW_LR_14_Days_Window 82.4 121.2 2.244
MW_35D_F_LgtGBM 85.6 124.3 2.306
MW_35D_F_RidgeR 85.1 119.5 2.324
SD_LR_1_52_Weeks_Ago 85.5 117.6 2.335
MW_LR_7_Days_Window 92.0 134.0 2.511
SD_F_SVMReg 100.1 138.2 2.774
MW_35D_F_LassoR 103.7 150.7 2.813
SD_F_LassoR 103.9 136.7 2.888
SD_F_LinReg 106.4 139.4 2.959
SD_F_RidgeR 106.4 139.4 2.959
SD_F_LgtGBM 109.9 143.5 3.003
SD_LR_52_Weeks_Ago 116.3 162.5 3.123
SD_F_MLPerc 116.4 152.5 3.176
SD_LR_1_Week_Ago 119.5 196.9 3.228
MW_35D_F_MLPerc 155.7 192.6 4.327
SD_F_LSTM 169.1 205.8 4.701
SD_F_CNN 173.1 205.6 4.831

Table 9.3. Performance metrics for twenty best base-learners and classification-based ensembles forecasting power
demand in Ireland for year 2022. Classification-based ensembles, selected for validation, were marked in grey.

Figure 9.14 depicted base-learners and classification-based ensembles’ performance as a

function of the day of the week, month, and hour.
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MAPE as function of Day of the Week, Month of the Year, Hour of the Day
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Figure 9.14. MAPE for predictions for 2022 by base-learners (left column) and ensemble learning models (right column) as

function of day of the week (top row), month of the years (middle row) and hour of the day (bottom row).
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Comparison of distributions, forecasted by ensembles and actual power demand, for year 2022
was shown on Figure 9.15. Non-parametric Kolmogorov-Smirnov test was used to investigate whether

forecasted and actual demand, in pairs, were from the same distribution (Table 9.4).
Comparison of Forecasted by Classification Ensembles and Actual Demand distributions for Year 2022
ENS_CLA_MLPercC = ENS_CLA_LogRegC ENS_CLA_LgtGBMC
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Figure 9.15. Comparison of forecasted by ensembles and actual power demand distributions for Year 2019.

Samples from predictions of below ensembles and actual demand in 2019
were from the same distributions were from different distributions
ENS_CLA_MLPercC ENS_CLA_LogRegC

ENS_CLA_SVMClas ENS_CLA_LgtGBMC

Table 9.4. Results of Kolmogorov-Smirnov test for predictions of ensembles and actual power demand in 2022.

9.6. One Day-Ahead Forecasting of Power Demand in Ireland for Year 2022

To visualise the potential of ensemble learning models in ODADF in Ireland, time series of
predictions by the best ensembles, such as classification-based ensemble with MLP and SVM as meta-

learners were compared to the prediction of the best base-learner SVM (MW) and real power demand

in Ireland in 2022 on Figure 9.16.
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9.7. Discussion Regarding Validation of Experimentation Results

The validation of experimentation with classification-based ensembles verified that they
exhibited notably less performance variation compared to base-learners. For example, MAE, RMSE
and MAPE varied 70.3-74.0MW, 100.3-105.5MW, and 1.91-2.01%, respectively. For comparison, MAE,
RMSE and MAPE for twenty base-learners varied 79.0-173.1MW, 117.1-205.6MW, and 2.15-4.83%,

respectively.

All classification-based ensembles outperformed the best base-learner. Ensembles of twenty
base-learners, with SVM and MLP classifiers as meta-learner, achieved the lowest MAPE 1.91%, which
was 11.2% improvement in comparison to the best base-learner, SVM (SD) MAPE 2.15%. Ensemble
models utilizing Logistic Regression, and GBM as meta-learners closely trailed the leading model,

registering MAPE scores of 2.01%.

Finally, while comparison of predictions by ensembles and actual power demand in 2019
distributions looked similar visually, inferential statistics tests revealed that, predictions of two
winning classification-based models, utilising MLP and SVM as meta-learners, aligned with the
distribution of the actual demand, and those utilising Logistic Regression and GBM as meta-learners,

deviated from the distribution of actual demand.

9.8. Conclusion

The efficacy of classification-based ensembles, which integrated a variety of diverse base-
learners, was validated on previously unseen data. Ensembles not only harnessed the combined
strengths but also mitigated the potential inconsistencies found in individual base-learners.
Furthermore, while predictions of 65% base-learners deviated from the distribution of actual demand,
predictions of classification-based models, utilising MLP and SVM as meta-learners, aligned with the
distribution of the actual demand. That underscored the value of leveraging a variety of models when

constructing ensemble systems, which led to more robust and accurate ensemble predictions.

Finally, classification-based ensembles stood out as the most effective solution in ODADF.
Specifically, these models employed meta-learners like MLP and SVM. Their role was two-fold:

e predicting which base-learners were likely the best predictors based on factors like the day of

the week, holiday on weekday, day of the year, hour, and lagged by 39-hours weather factors,

e providing ensemble predictions by multiplying the probabilities of base-learners with their
respective forecasts.
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10. Research Conclusion: Summary, Limitations, and Recommendations

Introduction and literature review were covered in Chapters 1-2, respectively. Chapters 3-6
covered the preparation phase. Experimentations with base-learners and meta-learners of ensembles

were covered in Chapters 7-8, respectively, followed by validation of the results in Chapter 9.

In Chapter 1, accurate One Day-Ahead Demand Forecasting (ODADF) was found crucial for
electrical network reliability, the environment, and trading markets. Problem with achieving accurate
predictions by individual models, as well as possible solution, the use of ensembles, had been both
identified. Finally, the research objectives were formed, to develop a framework of ensemble learning

models, evaluate their performance, and examine their potential for ODADF in Ireland.

In Chapter 2, comprehensive overview of the state-of-the-art methodologies to Short-Term Load
Forecasting (STLF), revealed gap in the knowledge which needs to be filled. No research, examining
implementation of ensemble learning models, either to ODADF or STLF in Ireland, was found.
Nevertheless, strengths and weaknesses of single and hybrid models, reported in papers, were
invaluable in guiding the selection of base-learners and integration methods to develop ensemble
learning framework. Furthermore, the significance of incorporating historical demand, calendar data,
weather variables and their encoding, informed the development and implementation of the
framework. Moreover, insights gleaned from real-world applications as well as challenges and

limitations in the field, informed the experimental design for this research.

In Chapter 3, the methodology framework of research was developed, and CRISP-DM, adapted
to requirements of the research, was selected as project management framework. Experimentation
was selected as primary research methodology, and the population of interest, sampling method and
type, as well as quantitative research approach were identified as appropriate. The development of
ensembles’ framework considered a balance between performance and computational complexity of
the configurations. Three stacking approaches were considered, such as classifiers and regressors as
meta-learners, and heuristic rules. A variety of machine and deep learning regressors for potential
base-learners was considered. Moreover, two methods of supervised problem creation, based on
Similar Day (SD) and Moving Window (MW) approaches, were proposed to increase the ability of base-
learners to find various patterns in data. To evaluate the performance of ensembles by comparing
their metrics, strict experimentation setting was established, where all models were trained and
evaluated under the same conditions. To examine the potential of ensembles to ODADF in Ireland,
ensembles and base-learners, were compared using various performance metrics as a function of day

type, month and hour. Testing the best solutions on unseen data, and performing inferential statistical
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tests, were used to validate the results. Bayesian optimisation with 10-fold cross-validation was
selected for hyperparameters tuning. Project management section covered detailed descriptions of

all steps performed in the thesis. Finally, limitations and ethical considerations were described.

In Chapter 4, sources and selection of datasets were identified, and raw data for power demand
and weather factors was collected. Initial Exploratory Data Exploration (EDA) detected Daylight-Saving
Time (DST) distortions, missing values and outliers in time series. Extraction of day of the week,
holidays occurring on weekdays, day of the year, and hour, enhanced the data by temporal features.
Finally, temperature, relative humidity and wind speed were selected as exogenous variables, and

data was trimmed to cover years 2014-2022.

In Chapter 5, power demand data preparation for modelling was performed, including DST
distortion removal, and replacement of missing data and outliers. New data was validated by
performance metrics, visual comparison to SDs from neighbouring weeks, and distributions before
and after the cleaning process. EDA, including descriptive and inferential statistics, revealed patterns,
trends and seasonality in power demand, which were seriously disrupted by Covid-19 lockdown
restrictions in Ireland in 2020. Subsequently, baseline models were examined on data from year 2019,
as starting point and reference for comparison with more complex models. Investigations into weekly
and daily lags, and window size were performed for SD and MW approaches, respectively. Scaling of
power demand, and encoding of temporal features to cyclical and sparse vector formats, were found
valid and beneficial to ODADF in Ireland by correlation study. Finally, supervised learning problems

were defined separately for SD and MW approaches.

In Chapter 6, multivariate data preparation for modelling was performed, including DST
distortion removal from weather factors, and investigation into correlation between lagged weather
variables and power demand. Temperature, relative humidity and wind speed, lagged by 39-hours
were selected as potential weather features. As weather data was distributed locally, three
approaches to find representative stations were proposed, such as virtual weather stations created
by Linear and Lasso Regression, as well as the most important real one. Weather factors were scaled
and results were validated by correlation study and distributions comparison. Investigation into
feature importance was performed to select the best ones, considering all three representative
weather stations, utilising various methods, separately for SD and MW approaches. Finally, supervised
learning datasets, utilising selected features, were created for SD and MW approaches, employing
weather factors created with Linear and Lasso Regression, respectively. Given that data from year
2020 was found to be indeed an outlier, datasets were split primarily into training and testing sets,

covering years 2014-2019, and 2021-2022, respectively.
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In Chapter 7, experimentation with wide range of potential base-learners was performed.
Training datasets were further split into training and validation subsets, covering years 2014-2018,
and 2019, respectively. Then, Bayesian optimisation with 10-fold cross-validation was used for base-
learners hyperparameters tuning, and predictions were made for years 2015-2019. Potential base-
learners were evaluated on year 2019, and the twenty most promising ones were selected as base-
learners. Both, similar day-based and moving window-based models found their place in the selection.
All base-learners showed fluctuations in their MAPE across different days of the week, months and

hours. That variability was found potentially beneficial for ensemble learning models.

In Chapter 8, experimentation with three potential integration methods, identified in Chapter 3,
was performed, incorporating predictions of twenty base-learners from Chapter 7 as training data for
the ensembles. Heuristic rule-based ensembles were used as the baseline models. Bayesian
optimisation with 10-fold cross-validation was used for hyperparameters tuning of classifiers and
regressors as meta-learners, and predictions by ensembles were made for years 2015-2019. Potential
ensembles were evaluated on year 2019, and classification-based ensemble learning models, as the

winners of study, were selected for further investigation.

The experimentation phase established a cause-and-effect relationship between ensemble
configurations and performance metrics of ODADF in Ireland. Firstly, limiting the number of base-
learners adversely affected ensembles’ performance, which highlighted the capability of ensembles
to effectively handle and manage their input. Concurrently, while keeping the same number of base-
learner predictions as an independent variable, changing the integration approach had significant
influence on their overall performance. As a result, the integration method emerged as the primary
causal variable. Additionally, the importance of the data preparation phase was on par with that of
designing the ensemble architectures. The introduction of SD and MW approaches amplified the
diversity of the base-learners' predictions. This enhanced diversity underscored the benefits of
incorporating a varied range of base-learners, ultimately benefiting the performance of ensemble

systems for ODADF in Ireland.

Ensemble learning models not only harnessed the combined strengths but also mitigated the
potential inconsistencies found in individual base-learners. Even the lesser-performing ensembles not
only approached the proficiency of the best base-learners but also outstripped the performance of
the least effective base-learner. Additionally, incorporating virtual representative weather stations
was found beneficial to performance of classification-based ensemble learning models. While
ensembles using Logistic Regression and SVM as meta-learners performed better with weather factors

from the virtual weather station created with Linear Regression, those ones, which utilized GBM and
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MLP favoured the Lasso Regression. Interestingly, those two virtual weather stations were favoured
over the most important real weather station in Mount Dillon both, by SD and MW base-learners, as
well as by meta-learners of classification-based ensembles. That proves the benefit of their
introduction to this research. Moreover, while half of the base-learners predictions deviated from the
distribution of actual demand, predictions of classification-based and heuristic rule-based models
aligned with the distribution of the actual demand. That underscored the value of leveraging a variety
of models when constructing ensemble systems, which led to their more robust and accurate

predictions.

In Chapter 9, validation of experimentation results was performed. Testing datasets were further
splitinto training and validation subsets, covering years 2021 and 2022, respectively. Then, the twenty
base-learners, with hyperparameters inferred from Chapter 7 were refitted and evaluated on unseen
data from years 2021-2022, respectively. Subsequently, classification-based meta-learners, with
hyperparameters inferred from Chapter 8 were refitted and evaluated on the base-learners’

predictions and data for year 2022, respectively.

The results proved the high potential of classification-based ensembles for ODADF in Ireland.
Ensembles of twenty base-learners, with SVM and MLP classifiers as meta-learners, achieved the
lowest MAPE 1.91%, which was 11.2% improvement in comparison to the best base-learner, SVM (SD)
registering MAPE 2.15%. Furthermore, while predictions of 65% base-learners deviated from the
distribution of actual demand, predictions of above ensembles aligned with the distribution of the
actual demand. Therefore, classification-based ensembles with SVM and MLP classifiers as meta-
learners stood out as the most effective solution for ODADF, and their high potential was revealed,

recognised and validated on unseen data.

All research objectives were fully addressed in the thesis. The framework of ensemble learning
models for ODADF in Ireland was developed in Chapters 3, 7-8. Following experimentation with
selected architectures of ensemble learning models, their performance was evaluated by comparing
their metrics, and the cause-and-effect relationship between architecture of ensembles and ODADF
performance was established in Chapters 7-8. Finally, the potential of classification-based ensemble

learning application to ODADF in Ireland was revealed and validated in Chapters 8-9, respectively.

While this research addressed the gap in knowledge, identified in Chapter 2, demonstrating the
potential of ensemble learning models for ODADF in Ireland, further work is needed to
comprehensively bridge this gap. Given that the project was conducted with the use of personal

computer and within twelve weeks period, limitations in architecture of the ensembles were
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recognised and accepted, with the aim to develop a balanced ensemble model, where potential
benefit in accuracy was weighted against computational effort and complex model building.
Therefore, DL was not incorporated for MW approach, and Bayesian optimisation of hyperparameters
tuning was restricted to twenty trials. Besides, hybrid models were not considered as base-learners.
Moreover, early-stopping was not integrated into the MLP, LSTM, and CNN models because it was
found incompatible with Bayesian optimisation, causing early-stopped trials to fail. Nevertheless, the
number of epochs was set as a hyperparameter to be optimised. Furthermore, while heuristic rule,
classifiers and regressors from stacking integration methods were examined in this research, bagging
and boosting ensembles were not explored due to time-constraints. Lastly, although feature selection
was conducted separately for the SD and MW approaches using a variety of methods, the final decision

was based on the performance of the LR model, and applied to all other models.

Future research could be performed to evaluate the potential of using wider variety of base-
learners for stacking meta-learners, as well as other integration methods for ODADF in Ireland. Firstly,
it would be recommended to evaluate DL models for MW approach, and increase the number of trials
in Bayesian optimisation from twenty to at least one-hundred. Secondly, inclusion of hybrid models
could enhance the variety of base-learners. Thirdly, integration of early-stopping into Bayesian
optimisation could reduce the time needed for hyperparameters tuning. Lastly, conducting feature
selection individually for each model could enhance the performance of both base-learners and

ensemble learning models.

101



References:

Adams, K.A. and McGuire, E.K. (2022) Research Methods, Statistics, and Applications. SAGE Publications.

Adeva, J.J.G., Beresi, U.C., Calvo, R.A. (2005). Accuracy and Diversity in Ensembles of Text Categorisers. CLEI Journal. 8 (2):
1:1-1:12. Available at https://doi.org/10.19153/cleiej.8.2.1.

Ahmad, N., Ghadi, Y., Adnan, M. and Ali, M. (2022) ‘Load Forecasting Techniques for Power System: Research Challenges and
Survey’, IEEE Access, 10, pp. 71054—71090. Available at: https://doi.org/ 10.1109/ACCESS.2022.3187839.

Al-Musaylh, M.S., Deo, R.C., Adamowski, J.F. and Li, Y. (2018) ‘Short-term electricity demand forecasting with MARS, SVR and
ARIMA models using aggregated demand data in Queensland, Australia’, Advanced Engineering Informatics, 35, pp. 1-16.
Available at: https://doi.org/10.1016/ j.aei.2017.11.002.

Altman, N.S. (1992) ‘An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression’, The American Statistician,
46(3), pp. 175-185. Available at: https://doi.org/10.1080/ 00031305.1992.10475879.

Bakirtzls, A.G., Petridls, V., Klartzis, S.J., Alexladls, M.C. and Malssls, A.H. (1996) ‘A neural network short term load forecasting
model for the Greek power system’, IEEE Transactions on Power Systems, 11(2), pp. 858-863. Available at:
https://doi.org/10.1109/59.496166.

Bandura, K., Hyndman, R.J. and Bergmeir C. (2021) MSTL: A Seasonal-Trend Decomposition Algorithm for Time Series with
Multiple Seasonal Patterns. Available at: https://doi.org/10.48550/ arXiv.2107.13462.

Beggs, C. (2012) Energy: Management, Supply and Conservation. Routledge.

Bolzern, P., Fronza, G. and Brusasca, G. (1982) ‘Temperature Effects on the Winter Daily Electric Load’, Journal of Applied
Meteorology (1962-1982), 21(2), pp. 241-243.

Breiman, L. (2001) ‘Random Forests’, Machine Learning, 45(1), pp. 5-32. Available at: https://doi.org/10.1023/
A:1010933404324.

Brockwell, P.J. and Dauvis, R.A. (eds) (2002) ‘State-Space Models’, in Introduction to Time Series and Forecasting. New York,
NY: Springer New York (Springer Texts in Statistics), pp. 259-316. Available at: https://doi.org/10.1007/0-387-21657-X_8.

Brown, G., Wyatt, J., Harris, R. and Yao, X. (2005). Diversity creation methods: a survey and categorisation. Information
Fusion, 6(1), pp.5-20, 2005. Available at: https://doi.org/10.1.1.421.349

Bryman, A. and Bell, E. (2015) Business Research Methods. Oxford University Press.

Burkov, A. (2019) The Hundred-Page Machine Learning Book. Scientific Research Publishing.

Ceperic, E., Ceperic, V. and Baric, A. (2013) ‘A Strategy for Short-Term Load Forecasting by Support Vector Regression
Machines’, IEEE Transactions on Power Systems, 28(4), pp. 4356—4364. Available at: https://doi.org/10.1109/
TPWRS.2013.2269803.

Challu, C., Olivares, K. G., Oreshkin, B. N., Garza Ramirez, F., Mergenthaler Canseco, M. and Dubrawski, A. (2023) NHITS:
Neural Hierarchical Interpolation for Time Series Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence,
37(6), pp. 6989-6997. Available at: https://doi.org/ 10.1609/aaai.v37i6.25854.

Chatfield, C. (2015) ‘The Analysis of Time Series Forecasting: An Introduction’. CRC Press Boca Raton.

Chen, C. and Liu, L.-M. (1993) ‘Joint Estimation of Model Parameters and Outlier Effects in Time Series’, Journal of the
American Statistical Association, 88(421), pp. 284—297. Available at: https://doi.org/10.1080/01621459.1993.10594321.

Chollet, F. (2021) Deep Learning with Python, Second Edition. Simon and Schuster.

Czapaj, R., Kaminski, J. and Softysik, M. (2022) ‘A Review of Auto-Regressive Methods Applications to Short-Term Demand
Forecasting in Power Systems’, Energies, 15(18), p. 6729. Available at: https://doi.org/10.3390/en15186729.

102



Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T.P., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0: Step-by-step
data mining guide. Available at: https://api.semanticscholar.org/ CorpusID:59777418. (Accessed 02/08/2023)

Day, T. (2006). Degree days: Theory and application. TCloBSE, London, 106, 2006. Available at:
https://www.cibse.org/knowledge-research/knowledge-portal/technical-memorandum-41-degree-days-theory-and-
application-2006-pdf (Accessed: 13/05/2023).

De Livera, A.M., Hyndman, R.J., & Snyder, R. D. (2011), Forecasting time series with complex seasonal patterns using
exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527. Available at:
https://doi.org/10.1198/jasa.2011.tm09771.

Dudek, G. (2015) ‘Short-Term Load Forecasting Using Random Forests’, in D. Filev, J. Jabtkowski, J. Kacprzyk, M. Krawczak, I.
Popcheyv, L. Rutkowski, V. Sgurev, E. Sotirova, P. Szynkarczyk, and S. Zadrozny (eds) Intelligent Systems’2014. Cham: Springer
International Publishing (Advances in Intelligent Systems and Computing), pp. 821-828. Available at:
https://doi.org/10.1007/978-3-319-11310-4_71.

Dudek, G. (2016) ‘Pattern-based local linear regression models for short-term load forecasting’, Electric Power Systems
Research, 130, pp. 139-147. Available at: https://doi.org/10.1016/j.epsr.2015.09.001.

EirGrid Group (2022) All-Island Generation Capacity Statement 2022-2031, EirGrid Group. Available at: https://
www.eirgridgroup.com/library/ (Accessed: 23 April 2023).

EirGrid Group (2023) Explore the Smart Grid Dashboard, Smart Grid Dashboard. Available at: https://
smartgriddashboard.com/ (Accessed: 12 May 2023).

Elman, J.L. (1990) ‘Finding Structure in Time’, Cognitive Science, 14(2), pp. 179-211. Available at: https://doi.org/
10.1207/s15516709cog1402_1.

Enders, W. (2014) Applied Econometric Time Series, 4th Edition | Wiley, Wiley.com. Available at: https://www.wiley.com/en-
us/Applied+Econometric+Time+Series%2C+4th+Edition-p-9781118808566 (Accessed: 22/07/2023).

Fan, S., Chen, L. and Lee, W.-J. (2009) ‘Short-Term Load Forecasting Using Comprehensive Combination Based on
Multimeteorological Information’, IEEE Transactions on Industry Applications, 45(4), pp. 1460-1466. Available at:
https://doi.org/10.1109/TIA.2009.2023571.

Fan, S. and Hyndman, R.J. (2012) ‘Short-Term Load Forecasting Based on a Semi-Parametric Additive Model’, IEEE
Transactions on Power Systems, 27(1), pp. 134—141. Available at: https://doi.org/10.1109/TPWRS.2011.2162082.

Farrokhabadi, M., Browell, J., Wang, Y., Makonin, S., Su, W. and Zareipour, H. (2022) ‘Day-Ahead Electricity Demand
Forecasting Competition: Post-COVID Paradigm’, IEEE Open Access Journal of Power and Energy, 9, pp. 185-191. Available
at: https://doi.org/10.1109/0AJPE.2022.3161101.

Fidalgo, J.N. and Matos, M.A. (2007) ‘Forecasting Portugal Global Load with Artificial Neural Networks’, in J.M. De S3, L.A.
Alexandre, W. Duch, and D. Mandic (eds) Artificial Neural Networks — ICANN 2007. Berlin, Heidelberg: Springer Berlin
Heidelberg (Lecture Notes in Computer Science), pp. 728-737. Available at: https://doi.org/10.1007/978-3-540-74695-9_75.
Foster, J. (2020) Electric load forecasting with increased embedded renewable generation. Ph.D. Queen’s University Belfast.
Available at: https://pure.qub.ac.uk/en/theses/electric-load-forecasting-with-increased-embedded-renewable-

generation(437a7dd7-20f3-44bc-884a-7f8aaed2c65b).html (Accessed: 22/07/2023).

Friedman, J.H. (2001) ‘Greedy Function Approximation: A Gradient Boosting Machine’, The Annals of Statistics, 29(5), pp.
1189-1232.

FSF (2023). Free Software Foundation. Available at: https://fsf.org. (Accessed: 05/07/2023)

Géron, A. (2019) Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to
Build Intelligent Systems. O’Reilly Media, Inc.

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep Learning. MIT Press.

103



Grmanova, G., Laurinec, P., Rozinajov4, V., Ezzeddine, A.B., Lucka, M., Lacko, P., Vrablecovd, P. and Navrat, P. (2016)
‘Incremental Ensemble Learning for Electricity Load Forecasting’, Acta Polytechnica Hungarica, 13(2). Available at:
https://doi.org/10.12700/APH.13.2.2016.2.6.

Han, L., Peng, Y., Li, Y., Yong, B., Zhou, Q. and Shu, L. (2019) ‘Enhanced Deep Networks for Short-Term and Medium-Term
Load Forecasting’, IEEE Access, 7, pp. 4045—4055. Available at: https://doi.org/10.1109/ACCESS.2018.2888978.

Haykin, S.0. (2010) Neural Networks and Learning Machines: International Edition. Pearson Education, Limited.

He, W. (2017) ‘Load Forecasting via Deep Neural Networks’, Procedia Computer Science, 122, pp. 308—314. Available at:
https://doi.org/10.1016/j.procs.2017.11.374.

Hinman, J. and Hickey, E. (2009) ‘MODELING AND FORECASTING SHORT-TERM ELECTRICITY LOAD USING REGRESSION
ANALYSIS’,  Journal of Institute for Regulatory Policy Studies [Preprint]. Available at: https://
irps.illinoisstate.edu/downloads/research/documents/LoadForecastingHinman-HickeyFall2009.pdf.

Hochreiter, S. and Schmidhuber, J. (1997) ‘Long Short-Term Memory’, Neural Computation, 9(8), pp. 1735-1780. Available
at: https://doi.org/10.1162/neco0.1997.9.8.1735.

Hong, T. and Fan, S. (2016) ‘Probabilistic electric load forecasting: A tutorial review’, International Journal of Forecasting,
32(3), pp. 914-938. Available at: https://doi.org/10.1016/].ijforecast.2015.11.011.

Hong, T., Pinson, P. and Fan, S. (2014) ‘Global Energy Forecasting Competition 2012’, International Journal of Forecasting,
30(2), pp. 357-363. Available at: https://doi.org/10.1016/].ijfforecast.2013.07.001.

Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A. and Hyndman, R.J. (2016) ‘Probabilistic energy forecasting: Global
Energy Forecasting Competition 2014 and beyond’, International Journal of Forecasting, 32(3), pp. 896—913. Available at:
https://doi.org/10.1016/j.ijfforecast.2016.02.001.

Hong, T., Pinson, P., Wang, Y., Weron, R., Yang, D. and Zareipour, H. (2020) ‘Energy Forecasting: A Review and Outlook’, IEEE
Open Access Journal of Power and Energy, 7, pp. 376—388. Available at: https://doi.org/10.1109/0AJPE.2020.3029979.

Hong, T. and Shahidehpour, M. (2015) ‘Load Forecasting Case Study’, EISPC and NARUC, US, Department of Energy [Preprint].
Available at: https://pubs.naruc.org/pub.cfm?id=536E10A7-2354-D714-5191-A8AAFE45D626.

Hong, T., Xie, J. and Black, J. (2019) ‘Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting’,
International Journal of Forecasting, 35(4), pp. 1389-1399. Available at: https://doi.org/10.1016/j.ijfforecast.2019.02.006.

Hyndman, R.J. (2020) ‘A brief history of forecasting competitions’, International Journal of Forecasting, 36(1), pp. 7-14.
Available at: https://doi.org/10.1016/].ijforecast.2019.03.015.

Hyndman, R.J. and Athanasopoulos, G. (2018) Forecasting: principles and practice. OTexts.

Hyndman, R.J. and Koehler, A.B. (2006) ‘Another look at measures of forecast accuracy’, International Journal of Forecasting,
22(4), pp. 679-688. Available at: https://doi.org/10.1016/].ijforecast.2006.03.001.

Jiao, R., Zhang, T., Jiang, Y. and He, H. (2018) ‘Short-Term Non-Residential Load Forecasting Based on Multiple Sequences
LSTM Recurrent Neural Network’, IEEE Access, 6, pp. 59438-59448. Available at: https://doi.org/10.1109/
ACCESS.2018.2873712.

Joseph, M. (2022) Modern Time Series Forecasting with Python: Explore industry-ready time series forecasting using modern
machine learning and deep learning. Packt Publishing Ltd.

Kathirgamanathan, A., Patel, A., Khwaja, A.S., Venkatesh, B. and Anpalagan, A. (2022) ‘Performance comparison of single and
ensemble CNN, LSTM and traditional ANN models for short-term electricity load forecasting’, The Journal of Engineering,
2022(5), pp. 550-565. Available at: https://doi.org/10.1049/tje2.12132.

Khwaja, A.S., Naeem, M., Anpalagan, A., Venetsanopoulos, A. and Venkatesh, B. (2015) ‘Improved short-term load
forecasting using bagged neural networks’, Electric Power Systems Research, 125, pp. 109-115. Available at: https://doi.org/
10.1016/j.epsr.2015.03.027.

104



Kuncheva, L. and Whitaker, C. (2003). Measures of diversity in classifier ensembles. Machine Learning, 51, pp. 181-207.
Available from: https://link.springer.com/content/pdf/10.1023/A:1022859003006.pdf (Accessed: 18/08/2023)

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436—444. Available at: https://doi.org/
10.1038/nature14539.

Lu, C.-N., Wu, H.-T. and Vemuri, S. (1993) ‘Neural network based short term load forecasting’, IEEE Transactions on Power
Systems, 8(1), pp. 336—342. Available at: https://doi.org/10.1109/59.221223.

Met Eireann (2023) Historical Data - Met Eireann - The Irish Meteorological Service. Available at:
https://www.met.ie/climate/available-data/historical-data (Accessed: 12 May 2023).

Natekin, A. and Knoll, A. (2013) ‘Gradient boosting machines, a tutorial’, Frontiers in Neurorobotics, 7. Available at:
https://doi.org/10.3389/fnbot.2013.00021.

Negro, A. (2021). Graph-powered machine learning. Shelter Island: Manning Publications Co.

Obst, D., De Vilmarest, J. and Goude, Y. (2021) ‘Adaptive Methods for Short-Term Electricity Load Forecasting During COVID-
19 Lockdown in France’, IEEE Transactions on Power Systems, 36(5), pp. 4754-4763. Available at:
https://doi.org/10.1109/TPWRS.2021.3067551.

Ord, J.K., Koehler, A.B. and Snyder, R.D. (1997) ‘Estimation and Prediction for a Class of Dynamic Nonlinear Statistical Models’,
Journal of the American Statistical Association, 92(440), pp. 1621-1629. Available at: https://doi.org/10.1080/
01621459.1997.10473684.

Oreshkin, B.N., Carpov, D. Chapados, N. and Bengio, Y. (2020). N-BEATS: Neural basis expansion analysis for interpretable
time series forecasting. ICLR 2020 Conference Paper. Available at: https://doi.org/10.48550/arXiv.1905.10437.

Osowski, S., Szmurlo, R., Siwek, K. and Ciechulski, T. (2022) ‘Neural Approaches to Short-Time Load Forecasting in Power
Systems—A Comparative Study’, Energies, 15(9), p. 3265. Available at: https://doi.org/10.3390/en15093265.

Pardo, A., Meneu, V. and Valor, E. (2002) ‘Temperature and seasonality influences on Spanish electricity load’, Energy
Economics, 24(1), pp. 55-70. Available at: https://doi.org/10.1016/50140-9883(01)00082-2.

Park, D.C., EI-Sharkawi, M.A., Marks, R.J., Atlas, L.E. and Damborg, M.J. (1991) ‘Electric load forecasting using an artificial
neural network’, IEEE Transactions on Power Systems, 6(2), pp. 442—449. Available at: https://doi.org/10.1109/59.76685.

Roshan, J.V. (2022). Optimal ratio for data splitting. Statistical analysis and data mining. The ASA Data Science Journal, 15(4).
Available at: https://doi.org/10.1002/sam.11583.

Quinlan, J.R. (2014) C4.5: Programs for Machine Learning. Elsevier.
Resnik, D.B. (2005) The Ethics of Science: An Introduction. Routledge.

Resnik, D.B. (2018) The Ethics of Research with Human Subjects: Protecting People, Advancing Science, Promoting Trust.
Springer.

Saltz, J.S., Shamshurin, I. and Crowson, K. (2017). Comparing data science project management methodologies via a
controlled experiment. Proceedings of the 50t Hawaii International Conference on System Sciences. Available at:
https://doi.org/10125/41273.

Saunders, M., Lewis, P. and Thornhill, A. (2015) Research Methods for Business Students. Pearson Education.

Scheidt, F.V., Medinova, H., Ludwig, N., Richter, B., Staudt, P. and Weinhardt, C. (2020) ‘Data analytics in the electricity sector
— A quantitative and qualitative literature review’, Energy and Al, 1, p. 100009. Available at: https://doi.org/
10.1016/j.egyai.2020.100009.

Sethi, R. and Kleissl, J. (2020) ‘Comparison of Short-Term Load Forecasting Techniques’, in 2020 IEEE Conference on

Technologies for Sustainability (SusTech). 2020 IEEE Conference on Technologies for Sustainability (SusTech), Santa Ana, CA,
USA: IEEE, pp. 1-6. Available at: https://doi.org/10.1109/SusTech47890.2020.9150490.

105



Shahare, K., Mitra, A., Naware, D., Keshri, R. and Suryawanshi, H.M. (2023) ‘Performance analysis and comparison of various
techniques for short-term load forecasting’, Energy Reports, 9, pp. 799-808. Available at: https://doi.org/
10.1016/j.egyr.2022.11.086.

Shamoo, A.E. and Resnik, D.B. (2009) Responsible Conduct of Research. Oxford University Press.

Sollich, P. and Krogh, A. (1996). Learning with ensembles: How overfitting can be useful. Advances in Neural Information
Processing Systems, volume 8, pp. 190-196, 1996. Available at: https://proceedings.neurips.cc/paper/1995/file/
1019c8091693ef5¢c5f55970346633f92-Paper.pdf (Accessed 18/08/2023).

Statsmodels (2023). Stationarity and differencing (ADF/KPSS). Available at: https://www.statsmodels.org/stable/
examples/notebook/generated/stationarity_detrending_adf_kpss.html (Accessed 06 July 2023)

Shumway, R.H. and Stoffer, D.S. (2017) Time Series Analysis and Its Applications: With R Examples. Cham: Springer
International Publishing (Springer Texts in Statistics). Available at: https://doi.org/10.1007/978-3-319-52452-8.

Song, K.-B., Ha, S.-K., Park, J.-W., Kweon, D.-J. and Kim, K.-H. (2006) ‘Hybrid Load Forecasting Method With Analysis of
Temperature Sensitivities’, IEEE  Transactions on Power Systems, 21(2), pp. 869-876. Available at:
https://doi.org/10.1109/TPWRS.2006.873099.

Steadman, R.G. (1984) ‘A Universal Scale of Apparent Temperature’, Journal of Climate and Applied Meteorology, 23(12),
pp. 1674-1687. Available at: https://doi.org/10.1175/1520-0450(1984)023<1674:AUSOAT>2.0.CO;2.

Tao Hong, Min Gui, Baran, M.E. and Willis, H.L. (2010) ‘Modeling and forecasting hourly electric load by multiple linear
regression with interactions’, in IEEE PES General Meeting. Energy Society General Meeting, Minneapolis, MN: IEEE, pp. 1-
8. Available at: https://doi.org/10.1109/PES.2010.5589959.

Tashman, L.J. (2000) ‘Out-of-sample tests of forecasting accuracy: an analysis and review’, International Journal of
Forecasting, 16(4), pp. 437—-450. Available at: https://doi.org/10.1016/50169-2070(00)00065-0.

Taylor, J.W. and Buizza, R. (2003) ‘Using weather ensemble predictions in electricity demand forecasting’, International
Journal of Forecasting, 19(1), pp. 57—-70. Available at: https://doi.org/10.1016/50169-2070(01)00123-6.

Taylor, J.W. and McSharry, P.E. (2007) ‘Short-Term Load Forecasting Methods: An Evaluation Based on European Data’, IEEE
Transactions on Power Systems, 22(4), pp. 2213-2219. Available at: https://doi.org/10.1109/TPWRS.2007.907583.

Tsekouras, G.J., Kanellos, F.D. and Mastorakis, N. (2015) ‘Short Term Load Forecasting in Electric Power Systems with Artificial
Neural Networks’, in Nikos Mastorakis, A. Bulucea, and G. Tsekouras (eds) Computational Problems in Science and
Engineering. Cham: Springer International Publishing (Lecture Notes in Electrical Engineering), pp. 19-58. Available at:
https://doi.org/10.1007/978-3-319-15765-8_2.

Vapnik, V. (2013) The Nature of Statistical Learning Theory. Springer Science & Business Media.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, t. and Polosukhin, I. (2017) ‘Attention is All
you Need’, Advances in Neural Information Processing Systems, 30. Available at: https://proceedings.neurips.cc/
paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (Accessed: 23 April 2023).

Vellido, A., Martin-Guerrero, J.D. and Lisboa, P.J. (2012) ‘Making machine learning models interpretable.’, in ESANN. Citeseer,
pp. 163-172.

Vorhies, W. (2016). CRISP-DM - a standard methodology to ensure a good outcome. Available at: https://
www.datasciencecentral.com/crisp-dm-a-standard-methodology-to-ensure-a-good-outcome. (Accessed 02/09/2023)

Wang, P., Liu, B. and Hong, T. (2016) ‘Electric load forecasting with recency effect: A big data approach’, International Journal
of Forecasting, 32(3), pp. 585-597. Available at: https://doi.org/10.1016/j.ijforecast.2015.09.006.

Wou, Z., Pan, S., Chen, F., Long, G., Zhang, C. and Yu, P.S. (2021) ‘A Comprehensive Survey on Graph Neural Networks’, IEEE
Transactions on Neural Networks and Learning Systems, 32(1), pp. 4-24. Available at: https://doi.org/10.1109/
TNNLS.2020.2978386.

Xie, J., Chen, Y., Hong, T. and Laing, T.D. (2018) ‘Relative Humidity for Load Forecasting Models’, IEEE Transactions on Smart
Grid, 9(1), pp. 191-198. Available at: https://doi.org/10.1109/T5G.2016.2547964.

106



Yu, Z., Niu, Z., Tang, W. and Wu, Q. (2019) ‘Deep Learning for Daily Peak Load Forecasting—A Novel Gated Recurrent Neural
Network Combining Dynamic Time Warping’, IEEE Access, 7, pp. 17184-17194. Available at: https://doi.org/
10.1109/ACCESS.2019.2895604.

Zhang, G., Patuwo, E.B. and Hu, Y.M. (1998) ‘Forecasting with artificial neural networks: The state of the art’, International
Journal of Forecasting, 14(1), pp. 35—62. Available at: https://doi.org/10.1016/50169-2070(97)00044-7.

Zhang, G.P. (2003) ‘Time series forecasting using a hybrid ARIMA and neural network model’, Neurocomputing, 50, pp. 159—
175. Available at: https://doi.org/10.1016/50925-2312(01)00702-0.

Zhang, Q., Yang, L.T., Chen, Z. and Li, P. (2018) ‘A survey on deep learning for big data’, Information Fusion, 42, pp. 146-157.
Available at: https://doi.org/10.1016/j.inffus.2017.10.006.

107



	Evaluating the Potential of Ensemble Learning for One Day-Ahead Forecasting of Power System Demand in Ireland
	Recommended Citation

	tmp.1700221801.pdf.Xm_oH

