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Figure 9.16. One day-ahead power demand forecasting for year 2019 using best base-learner two best ensembles. Holidays 
on weekdays were marked in pink. 
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9.7.    Discussion Regarding Validation of Experimentation Results 

The validation of experimentation with classification-based ensembles verified that they 

exhibited notably less performance variation compared to base-learners. For example, MAE, RMSE 

and MAPE varied 70.3-74.0MW, 100.3-105.5MW, and 1.91-2.01%, respectively. For comparison, MAE, 

RMSE and MAPE for twenty base-learners varied 79.0-173.1MW, 117.1-205.6MW, and 2.15-4.83%, 

respectively. 

All classification-based ensembles outperformed the best base-learner. Ensembles of twenty 

base-learners, with SVM and MLP classifiers as meta-learner, achieved the lowest MAPE 1.91%, which 

was 11.2% improvement in comparison to the best base-learner, SVM (SD) MAPE 2.15%. Ensemble 

models utilizing Logistic Regression, and GBM as meta-learners closely trailed the leading model, 

registering MAPE scores of 2.01%.  

Finally, while comparison of predictions by ensembles and actual power demand in 2019 

distributions looked similar visually, inferential statistics tests revealed that, predictions of two 

winning classification-based models, utilising MLP and SVM as meta-learners, aligned with the 

distribution of the actual demand, and those utilising Logistic Regression and GBM as meta-learners, 

deviated from the distribution of actual demand. 

9.8.    Conclusion 

The efficacy of classification-based ensembles, which integrated a variety of diverse base-

learners, was validated on previously unseen data. Ensembles not only harnessed the combined 

strengths but also mitigated the potential inconsistencies found in individual base-learners. 

Furthermore, while predictions of 65% base-learners deviated from the distribution of actual demand, 

predictions of classification-based models, utilising MLP and SVM as meta-learners, aligned with the 

distribution of the actual demand. That underscored the value of leveraging a variety of models when 

constructing ensemble systems, which led to more robust and accurate ensemble predictions. 

Finally, classification-based ensembles stood out as the most effective solution in ODADF. 

Specifically, these models employed meta-learners like MLP and SVM. Their role was two-fold: 

• predicting which base-learners were likely the best predictors based on factors like the day of 
the week, holiday on weekday, day of the year, hour, and lagged by 39-hours weather factors, 

• providing ensemble predictions by multiplying the probabilities of base-learners with their 
respective forecasts.  
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10. Research Conclusion: Summary, Limitations, and Recommendations 

Introduction and literature review were covered in Chapters 1-2, respectively. Chapters 3-6 

covered the preparation phase. Experimentations with base-learners and meta-learners of ensembles 

were covered in Chapters 7-8, respectively, followed by validation of the results in Chapter 9. 

In Chapter 1, accurate One Day-Ahead Demand Forecasting (ODADF) was found crucial for 

electrical network reliability, the environment, and trading markets. Problem with achieving accurate 

predictions by individual models, as well as possible solution, the use of ensembles, had been both 

identified. Finally, the research objectives were formed, to develop a framework of ensemble learning 

models, evaluate their performance, and examine their potential for ODADF in Ireland. 

In Chapter 2, comprehensive overview of the state-of-the-art methodologies to Short-Term Load 

Forecasting (STLF), revealed gap in the knowledge which needs to be filled. No research, examining 

implementation of ensemble learning models, either to ODADF or STLF in Ireland, was found. 

Nevertheless, strengths and weaknesses of single and hybrid models, reported in papers, were 

invaluable in guiding the selection of base-learners and integration methods to develop ensemble 

learning framework. Furthermore, the significance of incorporating historical demand, calendar data, 

weather variables and their encoding, informed the development and implementation of the 

framework. Moreover, insights gleaned from real-world applications as well as challenges and 

limitations in the field, informed the experimental design for this research. 

In Chapter 3, the methodology framework of research was developed, and CRISP-DM, adapted 

to requirements of the research, was selected as project management framework. Experimentation 

was selected as primary research methodology, and the population of interest, sampling method and 

type, as well as quantitative research approach were identified as appropriate. The development of 

ensembles’ framework considered a balance between performance and computational complexity of 

the configurations. Three stacking approaches were considered, such as classifiers and regressors as 

meta-learners, and heuristic rules. A variety of machine and deep learning regressors for potential 

base-learners was considered. Moreover, two methods of supervised problem creation, based on 

Similar Day (SD) and Moving Window (MW) approaches, were proposed to increase the ability of base-

learners to find various patterns in data. To evaluate the performance of ensembles by comparing 

their metrics, strict experimentation setting was established, where all models were trained and 

evaluated under the same conditions. To examine the potential of ensembles to ODADF in Ireland, 

ensembles and base-learners, were compared using various performance metrics as a function of day 

type, month and hour. Testing the best solutions on unseen data, and performing inferential statistical 
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tests, were used to validate the results. Bayesian optimisation with 10-fold cross-validation was 

selected for hyperparameters tuning. Project management section covered detailed descriptions of 

all steps performed in the thesis. Finally, limitations and ethical considerations were described.  

In Chapter 4, sources and selection of datasets were identified, and raw data for power demand 

and weather factors was collected. Initial Exploratory Data Exploration (EDA) detected Daylight-Saving 

Time (DST) distortions, missing values and outliers in time series. Extraction of day of the week, 

holidays occurring on weekdays, day of the year, and hour, enhanced the data by temporal features. 

Finally, temperature, relative humidity and wind speed were selected as exogenous variables, and 

data was trimmed to cover years 2014-2022. 

In Chapter 5, power demand data preparation for modelling was performed, including DST 

distortion removal, and replacement of missing data and outliers. New data was validated by 

performance metrics, visual comparison to SDs from neighbouring weeks, and distributions before 

and after the cleaning process. EDA, including descriptive and inferential statistics, revealed patterns, 

trends and seasonality in power demand, which were seriously disrupted by Covid-19 lockdown 

restrictions in Ireland in 2020. Subsequently, baseline models were examined on data from year 2019, 

as starting point and reference for comparison with more complex models. Investigations into weekly 

and daily lags, and window size were performed for SD and MW approaches, respectively. Scaling of 

power demand, and encoding of temporal features to cyclical and sparse vector formats, were found 

valid and beneficial to ODADF in Ireland by correlation study. Finally, supervised learning problems 

were defined separately for SD and MW approaches. 

In Chapter 6, multivariate data preparation for modelling was performed, including DST 

distortion removal from weather factors, and investigation into correlation between lagged weather 

variables and power demand. Temperature, relative humidity and wind speed, lagged by 39-hours 

were selected as potential weather features. As weather data was distributed locally, three 

approaches to find representative stations were proposed, such as virtual weather stations created 

by Linear and Lasso Regression, as well as the most important real one. Weather factors were scaled 

and results were validated by correlation study and distributions comparison. Investigation into 

feature importance was performed to select the best ones, considering all three representative 

weather stations, utilising various methods, separately for SD and MW approaches. Finally, supervised 

learning datasets, utilising selected features, were created for SD and MW approaches, employing 

weather factors created with Linear and Lasso Regression, respectively. Given that data from year 

2020 was found to be indeed an outlier, datasets were split primarily into training and testing sets, 

covering years 2014-2019, and 2021-2022, respectively.  



99 

 

In Chapter 7, experimentation with wide range of potential base-learners was performed. 

Training datasets were further split into training and validation subsets, covering years 2014-2018, 

and 2019, respectively. Then, Bayesian optimisation with 10-fold cross-validation was used for base-

learners hyperparameters tuning, and predictions were made for years 2015-2019. Potential base-

learners were evaluated on year 2019, and the twenty most promising ones were selected as base-

learners. Both, similar day-based and moving window-based models found their place in the selection. 

All base-learners showed fluctuations in their MAPE across different days of the week, months and 

hours. That variability was found potentially beneficial for ensemble learning models. 

In Chapter 8, experimentation with three potential integration methods, identified in Chapter 3, 

was performed, incorporating predictions of twenty base-learners from Chapter 7 as training data for 

the ensembles. Heuristic rule-based ensembles were used as the baseline models. Bayesian 

optimisation with 10-fold cross-validation was used for hyperparameters tuning of classifiers and 

regressors as meta-learners, and predictions by ensembles were made for years 2015-2019. Potential 

ensembles were evaluated on year 2019, and classification-based ensemble learning models, as the 

winners of study, were selected for further investigation. 

The experimentation phase established a cause-and-effect relationship between ensemble 

configurations and performance metrics of ODADF in Ireland. Firstly, limiting the number of base-

learners adversely affected ensembles’ performance, which highlighted the capability of ensembles 

to effectively handle and manage their input. Concurrently, while keeping the same number of base-

learner predictions as an independent variable, changing the integration approach had significant 

influence on their overall performance. As a result, the integration method emerged as the primary 

causal variable. Additionally, the importance of the data preparation phase was on par with that of 

designing the ensemble architectures. The introduction of SD and MW approaches amplified the 

diversity of the base-learners' predictions. This enhanced diversity underscored the benefits of 

incorporating a varied range of base-learners, ultimately benefiting the performance of ensemble 

systems for ODADF in Ireland. 

Ensemble learning models not only harnessed the combined strengths but also mitigated the 

potential inconsistencies found in individual base-learners. Even the lesser-performing ensembles not 

only approached the proficiency of the best base-learners but also outstripped the performance of 

the least effective base-learner. Additionally, incorporating virtual representative weather stations 

was found beneficial to performance of classification-based ensemble learning models. While 

ensembles using Logistic Regression and SVM as meta-learners performed better with weather factors 

from the virtual weather station created with Linear Regression, those ones, which utilized GBM and 
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MLP favoured the Lasso Regression. Interestingly, those two virtual weather stations were favoured 

over the most important real weather station in Mount Dillon both, by SD and MW base-learners, as 

well as by meta-learners of classification-based ensembles. That proves the benefit of their 

introduction to this research. Moreover, while half of the base-learners predictions deviated from the 

distribution of actual demand, predictions of classification-based and heuristic rule-based models 

aligned with the distribution of the actual demand. That underscored the value of leveraging a variety 

of models when constructing ensemble systems, which led to their more robust and accurate 

predictions. 

In Chapter 9, validation of experimentation results was performed. Testing datasets were further 

split into training and validation subsets, covering years 2021 and 2022, respectively. Then, the twenty 

base-learners, with hyperparameters inferred from Chapter 7 were refitted and evaluated on unseen 

data from years 2021-2022, respectively. Subsequently, classification-based meta-learners, with 

hyperparameters inferred from Chapter 8 were refitted and evaluated on the base-learners’ 

predictions and data for year 2022, respectively. 

The results proved the high potential of classification-based ensembles for ODADF in Ireland. 

Ensembles of twenty base-learners, with SVM and MLP classifiers as meta-learners, achieved the 

lowest MAPE 1.91%, which was 11.2% improvement in comparison to the best base-learner, SVM (SD) 

registering MAPE 2.15%. Furthermore, while predictions of 65% base-learners deviated from the 

distribution of actual demand, predictions of above ensembles aligned with the distribution of the 

actual demand. Therefore, classification-based ensembles with SVM and MLP classifiers as meta-

learners stood out as the most effective solution for ODADF, and their high potential was revealed, 

recognised and validated on unseen data. 

All research objectives were fully addressed in the thesis. The framework of ensemble learning 

models for ODADF in Ireland was developed in Chapters 3, 7-8. Following experimentation with 

selected architectures of ensemble learning models, their performance was evaluated by comparing 

their metrics, and the cause-and-effect relationship between architecture of ensembles and ODADF 

performance was established in Chapters 7-8. Finally, the potential of classification-based ensemble 

learning application to ODADF in Ireland was revealed and validated in Chapters 8-9, respectively. 

While this research addressed the gap in knowledge, identified in Chapter 2, demonstrating the 

potential of ensemble learning models for ODADF in Ireland, further work is needed to 

comprehensively bridge this gap. Given that the project was conducted with the use of personal 

computer and within twelve weeks period, limitations in architecture of the ensembles were 
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recognised and accepted, with the aim to develop a balanced ensemble model, where potential 

benefit in accuracy was weighted against computational effort and complex model building. 

Therefore, DL was not incorporated for MW approach, and Bayesian optimisation of hyperparameters 

tuning was restricted to twenty trials. Besides, hybrid models were not considered as base-learners. 

Moreover, early-stopping was not integrated into the MLP, LSTM, and CNN models because it was 

found incompatible with Bayesian optimisation, causing early-stopped trials to fail. Nevertheless, the 

number of epochs was set as a hyperparameter to be optimised. Furthermore, while heuristic rule, 

classifiers and regressors from stacking integration methods were examined in this research, bagging 

and boosting ensembles were not explored due to time-constraints. Lastly, although feature selection 

was conducted separately for the SD and MW approaches using a variety of methods, the final decision 

was based on the performance of the LR model, and applied to all other models. 

Future research could be performed to evaluate the potential of using wider variety of base-

learners for stacking meta-learners, as well as other integration methods for ODADF in Ireland. Firstly, 

it would be recommended to evaluate DL models for MW approach, and increase the number of trials 

in Bayesian optimisation from twenty to at least one-hundred. Secondly, inclusion of hybrid models 

could enhance the variety of base-learners. Thirdly, integration of early-stopping into Bayesian 

optimisation could reduce the time needed for hyperparameters tuning. Lastly, conducting feature 

selection individually for each model could enhance the performance of both base-learners and 

ensemble learning models.  
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