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Abstract  

Water Quality Data 

This thesis evaluates and optimises a variety of predictive models for assessing biological 

classification status, with an emphasis on water quality monitoring. Grounded in previous 

pertinent studies, it builds on the findings of (Arrighi and Castelli, 2023) concerning Tuscany’s 

river catchments, highlighting a solid correlation between river ecological status and 

parameters like summer climate and land use. They achieved an 80% prediction precision 

using the Random Forest algorithm, particularly adept at identifying "good" ecological 

conditions, leveraging a dataset devoid of chemical data.  

Simultaneously, it draws inspiration from (Donohue et al., 2006), who, through their expansive 

dataset of 797 monitoring stations across Ireland, unveiled pronounced inverse relationships 

between a river's ecological health and indicators such as urbanisation intensity. Their model, 

rooted in logistic regression, predicted the likelihood of a river meeting EU Directive's good 

status criterion with over 75% accuracy, relying on widely available landcover or chemical 

monitoring data. 

 

In this project and work exploration, the Random Forest Classifier emerged superior, boasting 

an impressive 83.21% accuracy in its best configuration, with an R^2 value of 0.7614 

accentuating its capability. A meticulous feature selection process revealed the efficacy of 

seven key chemistry parameters: Alkalinity, Ammonia, BOD5, Conductivity, DO, Nitrate, and 

Total Hardness. This significantly streamlines sampling needs. When these chemical 

parameters, largely sensor-monitored, are combined with river characteristics and risk 

indicators such as PIP layers, allowing biological status indicators ahead of the three-year 

QValue survey timelines, yielding results in merely months or days for processing the latest 

chemistry results. 

 

The work hereby presented offers a strong foundation in water quality monitoring and model 

improvement. The findings and methods discussed can help guide future researchers and 

industry professionals, promoting better decisions and driving progress in refining predictive 

models and tackling biological classification issues. 
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1. Introduction 

Water quality is a critical factor for environmental and public health, which depends on water’s 

physical, chemical and biological features that determine its use for various purposes. Water 

is a scarce and valuable resource that human activities affect and needs a holistic management 

approach in the format of applicable legislation, monitoring from regulatory agencies and 

policing from local authorities. It also involves social and political aspects such as equity, 

access and governance. Therefore, improving water quality is essential for environmental 

sustainability and human well-being. 

Water Quality Index (Horton R. K., 1965) is the process of elaborating a numeric value that 

classifies water quality in simple terms so stakeholders can use it to report and evaluate the 

results of the water programs in place, among others indicating how clean or polluted a water 

body is. It also informs the public and policymakers about water quality issues.  

Surface water quality can change due to natural and human causes, such as weather, land 

use, and pollution, making it essential to have reliable and accurate methods to predict surface 

water quality. This work and data entry require different methodologies, mainly in the form 

of time series data. 

- Sensor data (Jian Sha et al., 2021) monitoring parameters can be measured on-site 

using sensors or probes for Physical and chemical values. 

- Surveys and Monitoring Sampling: They utilise sample Kits and mostly require 

Laboratory Analysis. These cannot be measured on-site or need more sophisticated 

methods or equipment.  
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This research delves into the utility of diverse machine learning algorithms to assess the 

biological status of river water based on physio-chemical attributes and inherent river 

characteristics. It further explores methodologies for selecting pertinent parameters to 

improve prediction accuracy. 

The water condition in Ireland is evaluated based on standards set by the Water Framework 

Directive and other EU water-related laws. As per the latest Draft Riber Basin Report 

(Department of Housing, Local Government and Heritage, 2022) there are 2718 surface water 

bodies examined for ecological status, which ranges from high to bad. The ecological status 

is determined by considering a range of biological, physico-chemical, and hydromorphological 

quality elements. Physico-chemical elements comprise nutrient levels, pH, temperature, and 

dissolved oxygen etc., while hydromorphological elements look at river flow, depth variations, 

and the structure of riverbeds and shores. 

 

 

FIGURE 1: RIVER ECOLOGICAL STATUS 2022 

(Department of Housing, Local Government and Heritage, 2022) 

 

Biological quality and physico-chemical quality among hydromorphological quality elements 

determine the Ecological status. A river water body determines this according to the ‘one out, 

all out’ principle by the element with the lowest status out of all the assessed biological and 

supporting quality elements. Overall status assessments consider surface waters’ ecological 

and chemical statuses and their chemical and quantitative statuses. 
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FIGURE 2: CLASSIFICATION OF THE STATUS OF SURFACE WATERS AND GW  ACCORDING TO WFD 

(O’Boyle et al., 2018, pp. 2013–2018) 

 

2. Research Motivation 

2.1. Motivation 

River Biological Status in Irish rivers is a critical Water Quality Index surveyed and analysed 

every three years. Physio-chemical parameters, on the other side, are collected more 

frequently, and some of those water parameters can be collected in real-time using sensor 

data.  

CAN MACHINE LEARNING MODELS EFFECTIVELY ANTICIPATE RIVERS' BIOLOGICAL STATUS BY INFERRING 

BIOLOGICAL STATUS FROM PHYSIO-CHEMICAL CONDITIONS, RIVER CHARACTERISATION AND RISK 

ASSESSMENTS? 

2.2. Problem definition 

 

The EU Water Framework Directive aims for all surface waters in the EU to achieve good 

ecological status, ranging from high to bad (European Parliament, 2000). Various catchment 

attributes directly influence aquatic systems’ water chemistry and ecological status, with 
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intensified land use, such as urbanisation and agriculture, often leading to decreased 

ecological quality. In Ireland, the Quality Rating System, primarily based on benthic 

macroinvertebrate communities, has been employed since 1971 to monitor the ecological 

quality of over 3000 river sites, proving to be a robust measure linked to chemical status and 

fish assemblage structures (Donohue et al., 2006). 

The River Biological Status in Irish rivers is an essential indicator of water health and quality. 

The primary metric for this assessment, particularly in Ireland, has historically been analysing 

macroinvertebrates, including benthic invertebrates (QValues), phytoplankton, fish, 

macrophytes and aquatic plants (Wilkes et al., 2018).  

This choice is rooted in the sensitivity of many macroinvertebrates to environmental 

disturbances, their relatively localised residence patterns (Struijs et al., 2011), their life cycles 

that span several months to a year, and the diversity within macroinvertebrate communities. 

Each species’ unique sensitivity to pollutants offers a comprehensive picture of water quality. 

However, it is essential to recognise that while macroinvertebrates provide valuable insights, 

a holistic understanding of aquatic ecosystem health might also consider other biological 

quality elements, such as fish, macrophytes, and phytoplankton. The broader European 

guidance, like the Water Framework Directive (WFD), underscores the importance of such a 

comprehensive approach. Still, practical implementation often requires balancing available 

resources, historical monitoring practices, and specific characteristics of water bodies. 

Physio-chemical parameters provide supplementary information to the biological status. Unlike 

the triennial nature of biological assessments, these parameters are collected with greater 

frequency. Advancements in technology have made it possible to monitor some of these 

parameters in real-time using sensor systems. This frequent and real-time data collection 

offers a comprehensive overview of current water conditions, allowing for timely and 

responsive actions. 

By analysing the rich dataset of physio-chemical parameters, river characterisations and 

anthropogenic associated risk, insights into the QValues and potential changes or threats to 

the biological status of rivers can be anticipated. The rationale behind this is that changes in 

water chemistry often precede observable shifts in biological communities. In (Zhao et al., 

2021), it was found (SO42–), manganese (Mn), and iron (Fe) concentrations were the water 

chemistry parameters that best explained bacterioplankton community variation. In the case 

of invertebrates, this can also be physiological conditions such as temperature (Bonacina et 

al., 2023). 
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However, the complex nature of water ecosystems introduces specific challenges to this 

approach. Water quality is inconsistent; it can fluctuate dramatically based on location, 

season, and various anthropogenic activities, especially agricultural runoff. The Environmental 

Protection Agency introduced Pollution Impact Potential (PIP) (EPA Catchments Unit, 2021) 

maps to recognise this variability and its impacts, which is part of the extensive job produced 

by the authors (Mockler et al., 2017) regarding phosphorus (P) and nitrogen (N) emissions 

risks in Ireland. These tool have been instrumental in identifying areas with the highest risk 

of diffuse phosphorus (P) loss to surface water and diffuse nitrogen (N) loss to both surface 

and groundwater.  

The PIP maps integrate spatial data from farm management, soil types, and hydrogeology by 

estimating the annual nutrient losses from agricultural landscapes. Instead of being 

overwhelmed by the vastness of water quality data, these maps provide targeted insights, 

directing stakeholders towards areas that demand further characterisation and prioritised 

mitigation efforts. 

In the face of these challenges, opportunities for innovation emerge. The diverse nature of 

water quality data, combined with tools like the PIP maps, paves the way for researchers and 

scientists to develop advanced forecast models. By harnessing a data-driven approach, there 

is potential to create an interoperable strategy for water monitoring that considers the unique 

characteristics of different river systems. Such a strategy could lead to better prediction 

accuracy, ensuring that water bodies are managed more effectively, and potential issues are 

addressed proactively. 

Yet, these challenges also create room for innovation. The diverse nature of water quality 

data offers an opportunity for researchers and scientists to develop advanced forecast models. 

By harnessing a data-driven approach, there is potential to create an interoperable strategy 

for water monitoring that considers the unique characteristics of different river systems. Such 

a strategy could lead to better prediction accuracy, ensuring that water bodies are managed 

more effectively, and potential issues are addressed proactively. 
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2.3. Objectives 

 

2.4. Technical Objectives 

Num Objective 

T01 To compare the performance of different machine learning models in 

predicting biological status using big data from significant rivers in Ireland. 

T02 To determine the specific machine learning models and parameter sets that 

have the best performance in predicting biological status. 

T03 To propose independent variables to be used on the predictive models. 

T04 To apply non-linear machine learning techniques to identify the non-linear 

relationship between features and target variables. 

T05 To build a prediction model based on the proposed method and evaluate its 

accuracy on a water quality dataset. 

T06 To compare the accuracy of the proposed method with existing methods with 

a focus on reducing significant feature selection while maintaining model 

performance results 

 

  

Num Objective 

R01 To innovate the critical water parameters selection and propose methods 

(standalone and hybrid) to improve predictions effectively, inferring the 

predicted value of the invertebrate status (QValues). 

R02 Apply and propose suitable machine learning models and parameter sets that 

can accurately predict WQI with different time scales. 

R03 Evaluate the potential for cost-effective implementation of the developed 

model in surface water monitoring practices. 
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3. Literature Review 

3.1. Water Quality 

The overall water quality status emerges from intricate assessments of numerous indicators, 

each reflecting different facets of aquatic health and environmental conditions (Figure 2). 

Such complexity highlights the importance of comprehensive assessments and suggests 

multiple research avenues to delve into the multifaceted relationships among these indicators.  

Over the years, scholars and researchers have embarked on numerous studies focused on 

distinct aspects of water quality to elucidate the intricate web of interactions shaping our 

waters’ quality status. As the scope of these investigations varies widely, this literature review 

aims to traverse the breadth of this academic landscape, offering insights from diverse 

perspectives on water quality assessment.  

In doing so, the goal is to eventually hone in on the emerging and promising avenue of utilising 

machine learning to predict rivers’ ecological status (QValues) based on their physio-chemical 

conditions on Irish rivers. This focus is rooted in the belief that advancements in data analytics 

and computational methodologies, particularly machine learning, can revolutionise our 

understanding and prediction capabilities in aquatic ecology. 

3.2. Sampling strategies 

One of the challenges of data analysis for sensor systems is to balance the trade-off between 

timeliness and accuracy. The most extended research is typically laboratory samples and 

mixed real-time monitoring sampling. The former includes more information and parameter 

details than what can be generated from sensor devices. However, this model provides a more 

comprehensive and reliable understanding of the System’s performance and behaviour while 

providing timely feedback and alerts for potential issues or anomalies. In addition, sensor data 

can be applied to parameters such as Dissolved Oxygen (DO) (Wei et al., 2019), Total Nitrogen 

(TN) (Zhuang et al., 2022), and Total Phosphorus (TP) (Li et al., 2023), which also have the 

potential benefit of producing acceptable levels of WQI forecasting. 

 

3.3. Models for Predicting Water Quality: An Overview 
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Different models with distinct assumptions and attributes designed for specific data 

characteristics present a notable challenge when inter-calibrating and comparing results. 

Furthermore, this is not just because models have varied characteristics but also because their 

effectiveness dramatically differs depending on the specific problem and the unique features 

of the data they handle. It is crucial to understand that no universal benchmark qualifies one 

model unequivocally superior to another across all scenarios. Indeed, the landscape of 

modelling is far from being black and white. Instead, it is marked by various shades of grey, 

where the success of a model often hinges on meticulous preliminary data analyses, iterative 

testing on target data points, and a deep understanding of external factors influencing the 

data. The following sections explore various studies that have harnessed diverse models for 

predicting different water quality indices, shedding light on the intricacies and potential of 

each, to later on centre the focus on Ecological Status as the focus for this study. 

 

 

FIGURE 3 MATHINE LEARNING MODELS CLOUD TAG  

(ZHU ET AL., 2022) 

 

One significant aspect of this exploration is the classification problem for categorical WQI 

types. 

Tree-based models, encompassing Decision Trees and Ensemble Trees, serve as pivotal tools 

in this domain. Such models cater to both classification and regression challenges. They offer 

transparent and easily interpretable pathways for decision-making, demonstrating how 

various input variables (ranging from pollutant levels to pH, turbidity, and temperature) 

influence water quality. The ensemble tree approach amalgamates multiple decision trees, 

aiming to enhance predictive efficacy while curbing the risks of model overfitting. 

These methods use primarily two techniques: bagging and boosting. (Sun and Pfahringer, 2011) 

Bagging creates several datasets from randomly selected training samples, trains decision 

trees on each, and takes the mean of all predictions. Boosting (Malinin et al., 2021), on the 
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other hand, adjusts subsequent trees to resolve the net error of the previous tree. (Lu and Ma, 

2020) authors propose a hybrid model based on Gradient boosting (XGBoost) and Random 

Forest (RF) for predicting six water quality parameters, showing that the hybrid model using 

RF performed the best on temperature, DO, and SC, and Boosting XBBoost showed better 

performance for pH, Turbidity and FDOM. 

As outlined by (Daniels and Koutsougeras, 2021) the KNN approach can be adeptly used for 

regression tasks, where the values of the ‘k’ nearest neighbours are either averaged or 

weighed. For classification, it assigns the new instance the class of most of the k nearest 

neighbours. This can be useful if similar conditions (temperature, contaminant levels, etc.) 

produce similar water quality. Authors (A. Danades et al., 2016) used KNN for the water quality 

status classification, with results indicating that SVM accuracy outperformed the KNN model. 

In this regard, researchers also use linear models to decipher the relationships in water quality 

data. This is the case for Support Vector Machines (SVM), also used for water quality 

classification tasks (M. Ladjal et al., 2016). In addition, they can help understand the relationship 

between the parameters and the WQI. These models can be very effective if the relationship 

is linear or made linear with some kernel trick (as in SVM). 

The authors of (Derdour et al., 2022) propose a model based on eleven water quality 

parameters, obtaining a relevant percentage (95.4%) in water quality classification using SVM 

algorithms. A similar study of water quality prediction (Islam Khan et al., 2022), consisting of a 

nine parameters model (pH, DO, COD, TDS, EC, Turbidity, Chloride, SS, and Alkalinity) with 

PCA and SVR, was found to be the most accurate model for their study, a similar approach 

used on (Leong et al., 2021) for BOD and COD. 

While the primary emphasis of this study focuses on the classification of Ecological Status, it’s 

noteworthy to discuss how time series analysis can be integrated to enhance the prediction. 

In (Tan et al., 2012), the authors used a Least Squares Support Vector Machine (LS-SVM) time 

series prediction model, which leverages phase space reconstruction to transform time series 

data into vector data, then processed through the LS-SVM model. The LS-SVM-based water 

quality prediction model outperformed the Backpropagation (BP) and Radial Basis Function 

(RBF) network methods. Therefore, the LS-SVM method was found to have high predictive 

accuracy, making it particularly suited for real-time, small-sample water quality forecasts. 

On the subject of time series analysis, there is a rising wave of Neural Network models proving 

to be highly efficient. Such models are commonly employed for sequential data, especially 
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when dealing with water parameters in a time series format. For instance, (Li et al., 2018) 

employed Long Short-term Memory (LSTM) to improve the accuracy of predicting Dissolved 

oxygen in the range from 3 to 12 hours.  

A similar study (Yamak et al., 2020) utilised Gated Recurrent Unit (GRU), which can also 

remember past information to predict future water quality. In particular, researchers have 

verified that long short-term memory (LSTM) networks and bootstrapped wavelet neural 

networks (BWNN) can handle fluctuating and nonseasonal time-series water quality (Zhi et al., 

2021), (Wang et al., 2013) 

In (Lee et al., 2013), a model of 7 parameters is used to study TN  and TP, proposing a Multiple 

Linear regression model for their predictions. (Mohammad Zounemat-Kermani et al., 2019) 

proposed a model for the DO concentrations prediction problem using Cl, NOx, TDS, pH, and 

WT as independent variables. The authors evaluate two approaches: on one side using 

heuristics models (MLP and CCNN) and a second approach using time-series decomposition, 

Discrete Wavelet Transform (DWT) and variational mode decomposition (VMD). The analysis 

found VMD for the combination of NOx, pH, WT the best algorithm to predict DO.  

Having delved into individual models, shifting the focus towards ensemble models is pertinent. 

By combining different approaches, these models bring a composite perspective that often 

enhances prediction accuracy and robustness. Ensemble models (Kotu and Deshpande, 2015) 

combine various models; they can use different algorithms or training datasets and work 

together to provide a final prediction. The aim is to reduce generalisation error by leveraging 

the diversity and independence of the base models, effectively capturing the “wisdom of 

crowds”. This technique, commonly used in practical machine learning solutions, treats the 

ensemble of models as a single performing entity. In addition, they can reduce forecasting 

uncertainty by including predictions from several individual models that use different methods 

rather than relying on a single one.  

In (Shamshirband et al., 2019), ensemble models are employed to make reliable multi-day 

forecasts of water quality parameters, such as chlorophyll concentration and salinity, in Hilo 

Bay, Hawaii. The study combined the forecasts of different individual wavelet-artificial neural 

network (ANN) models using bagging and boosting ensemble techniques. Ensemble models 

offered the authors better accuracy and reliability in forecasting critical water quality 

parameters. Individual models were compared with the ensemble models; the latter 

outperformed the former. For instance, in the case of forecasting chlorophyll levels three days 

in advance, the ensemble model improved the R2 value from 0.75 to 0.81 and reduced the 
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Root Mean Square Error (RMSE, a measure of the differences between values predicted by a 

model and the values observed) from 1.80 to 1.36 mg/m3 compared to the best single model. 

Similar improvements were observed for salinity forecasting. 

3.4. Ecological Status 

After examining the wide range of models and their roles in predicting water quality, it is 

essential to narrow the focus to the ecological status of rivers.  

The authors of the research on Tuscany’s river catchments (Arrighi and Castelli, 2023) 

unveiled a potent correlation between river ecological status and parameters like summer 

climate and land use. Notably, the Random Forest algorithm emerged superior, demonstrating 

an 80% prediction precision for ecological statuses, especially excelling in identifying “good” 

ecological conditions, utilising a dataset composed of 14 easily accessible features and no 

chemical data.  

In their paper (Donohue et al., 2006) also incorporate into their dataset the interrelations 

between catchment attributes, the chemical composition of waters, and their consequent 

impact on the ecological health of rivers. 

The dataset consists of 797 distinct monitoring stations spread across Ireland; the authors 

employ an established biotic index, primarily rooted in the community structures of benthic 

macroinvertebrates, as their measure of ecological status. The findings from this broad study 

are striking: there are pronounced inverse relationships between a river’s ecological health 

and several indicators, including the intensity of urbanisation and agriculture within its 

catchment. The study applies logistic regression, identifying that the most significant 

pressures compromising the ecological integrity of Irish rivers stem from urbanisation, arable 

farming practices, and the prevalence of pasturelands within the catchment area. The study 

reveals that the likelihood of a river meeting the good status criterion laid out by the EU 

Directive can be predicted with considerably above 75% classification accuracy. This predictive 

power is harnessed using models employing widely available landcover data or drawing upon 

chemical monitoring data. 

Perhaps the most actionable insights from the paper emerge in the form of non-linear land 

cover and chemical thresholds. These thresholds can serve as powerful tools for risk 

management within catchments. The authors’ conclusions are both a call to action and a 

cautionary note: if the current patterns of land use persist, meeting the stringent demands of 
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the Water Framework Directive will pose a significant challenge. Ensuring the desired water 

quality will necessitate comprehensive changes, significantly mitigating nutrient exports from 

agricultural practices. The overarching message is clear: Ireland needs to adopt a more 

discerning and careful approach to land-use planning to achieve and maintain the water 

quality benchmarks set by the Directive. 

3.5. Conclusions 

Over the years, researchers have uncovered the multifaceted interactions of river waters, 

paving the way for innovative methods like machine learning to predict rivers’ ecological 

status, especially in the context of Irish rivers. This focus aligns with the belief that 

advancements in data analytics and computational methodologies, particularly machine 

learning, will significantly influence the aquatic ecology understanding. 

Sampling strategies play a pivotal role in balancing timeliness and accuracy. Laboratory 

samples combined with real-time monitoring sampling offer a holistic understanding of system 

behaviour, while sensor data proves instrumental in forecasting specific water quality 

parameters like Dissolved Oxygen (DO), Total Nitrogen (TN), and Total Phosphorus (TP). 

Predicting water quality presents many models, each tailored to specific data characteristics. 

The diverse nature of these models makes it challenging to benchmark their effectiveness 

universally, as their success largely depends on various external factors and the nature of the 

data they handle. Both traditional models, like Decision Trees and Ensemble Trees and newer 

models, such as Support Vector Machines and Neural Networks have proven effective in 

predicting water quality. Ensemble Models, which amalgamate various models, stand out for 

their predictive accuracy, especially in forecasting intricate parameters like chlorophyll 

concentrations. 

However, when the spotlight shifts to the ecological status of rivers, it’s apparent that specific 

models exhibit a more significant correlation with environmental conditions. The Random 

Forest algorithm, for instance, demonstrated significant prediction precision for the ecological 

statuses of Tuscany’s river catchments. The relationship between a river’s ecological health 

and the surrounding environment, particularly urbanisation and agricultural practices, is 

profound. A transformative approach to land-use planning is paramount to maintain the 

desired water quality and meet the benchmarks set by directives like the EU Water Framework. 
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4. Methodology 

This section outlines the methodologies employed in this study, focusing on two core areas: 

primary research through expert interviews and research methodology. The methodologies 

have been designed to ensure that the data and the study are relevant but also current, 

compatible, and unbiased. 

4.1. Primary research: In-depth interviews 

Nonprobability sampling is a method where selection from a population is based on unknown 

probabilities (Sheppard, 2020); moreover, it does not aim to represent the entire population, 

but the selections of the samples are not arbitrary, as it is presented next.  

Understanding the objectives of this research is indeed central to the selection of an 

appropriate sampling strategy. This study's primary aim is to predict rivers' biological status 

using machine learning algorithms based on surface water parameters. This objective involves 

interpreting and predicting complex, multidimensional data requiring insights from various 

water perspectives. 

The various perspectives are represented by the stakeholder groups involved or populations. 

- Group 1 Legislative: Water legislation experts 

- Group 2 Utilities: Water utility professionals 

Each population has been strategically selected (Sheppard, 2020) for its expertise and unique 

understanding of water quality and its impacts. First, water legislation experts, such as those 

at the EPA, can provide insights into the regulatory standards and legal framework 

surrounding water quality. Second, water utility professionals have hands-on experience with 

water treatment processes and understand the practical challenges of maintaining water 

quality.  

The chosen sampling strategy includes purposive sampling. 

Purposive Sampling 

The rationale for utilising purposive sampling is driven by the need to gather information from 

experts with extensive knowledge and experience in water quality and parameters. Reviewing 

academic literature, professional reports and regulatory documents can identify potential 
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highly knowledgeable and influential interviewees. This method ensures the information 

gathered is relevant, detailed, and comprehensive. 

Selection Bias 

This study’s sampling method (Wienclaw, 2021) must provide a representative sample of the 

population of interest to avoid bias and ensure accurate results. When the sample does not 

accurately reflect the population, selection bias can lead to incorrect conclusions, such as the 

infamous 1948 Gallup Poll that wrongly predicted Thomas Dewey’s victory over Harry Truman 

(Lusinchi, 2018). In addition, results from biased samples cannot be reliably extended to the 

larger population. To minimise the risk of for this, the following conditions will be applied: 

- Random selection from the poll of scientists in each list will be introduced to remove 

any possible bias.  

- Diversity: Include a variety of experts with different water-body domains: rivers, 

lakes, transitional and coastal. 

- Inclusion Exclusion Critierias:  

o At least ten years of experience in the water. 

o At least 5+ articles and publications relevant to the study. 

o Group 1: Works or has previously worked in water regulatory agencies. 

o Group 2: Works or has previously worked in water utilities. 

The selection process involves thoroughly reviewing academic literature, professional reports, 

and regulatory documents to identify individuals who can provide detailed and highly relevant 

data to inform the research. 

A total of 3 in-depth interviews have been organised with experts from various fields related 

to water quality. The interviews were designed to be open-ended, encouraging participants 

to share their thoughts, perceptions, and experiences in detail ( 

Annex I: Interviews).  



 

23 September 22, 2023 

Primary Research Strategy 

The primary research component of this study involves conducting in-depth one-to-one 

interviews (Saunders et al., n.d.) with selected experts in the two different water domains: 

legislation and utilities. These interviews aim to gather expert insights on the surface water 

parameters influencing the WQI and their implications.  

 

 

Sampling techniques (Saunders et al., n.d.) 

Depth Interviews 

This strategy aligns with the research objectives and is expected to provide valuable insights 

into predicting WQI using machine learning algorithms. The following table indicates the 

allocation of depth Interviews to each group according to the sampling strategy, assuming 

snowball sampling is required. 

 

Each interview of 45 minutes was conducted in a semi-structured (Saunders et al., n.d.) format, 

allowing for flexibility in the conversation while ensuring key topics were covered and 

introducing open-ended questions to allow the interviewee to elaborate further details.  

Group 
Ideal Number of 

Interviews 
Source Options Purposive Sampling 

Water Legislation (EPA) 2 Environmental Protection 

Agency (EPA) Ireland 

1 

Water Utilities 1 Water Utilities 1 
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The ethical framework for this research is guided by adherence to a defined set of 

considerations and principles that ensure this study’s validity, reliability, and integrity. The 

principles of informed consent, anonymity, and privacy will be applied from the early stages 

of data collection. This also extends to the careful and confidential handling and storage of all 

collected data. Ensuring the research data is free from bias, as it could have substantial 

undesired consequences and, therefore, must be representative and accurate. The storage 

and security of the data also demand strict ethical considerations, requiring encryption and 

restricted access to maintain the confidentiality and integrity of the information. 

Upon completing the research, the publication and exploitation of the findings present 

additional ethical considerations. These include respecting the anonymity of participants in 

published results, acknowledging all contributors, and being transparent about potential 

conflicts of interest. 

Be mindful of the potential misuse of the study’s findings and strive to mitigate this risk. The 

study aligns with best research practices, fostering credibility and trustworthiness in its results 

and implications. 

Bias in Data and its impact on Results 

As indicated in the Selection Bias, bias in data collection can stem from various factors, such 

as subjective interpretation, non-representative sampling, or biased questioning. When 

skewed data, the results may not accurately represent the population/group. This ultimately 

will affect the validity and reliability of the study. E.g. when certain groups of experts are over 

or under-represented in the sample, their perspectives might not be reflected adequately in 

the research outcomes. In order to eliminate or minimise this bias in the data collection 

process, the research must be transparent about the methodology used, adequately 

representative of the population, and ensure that results are trustworthy and can contribute 

meaningfully to the study.  

Data use for other purposes 

While water is a concept that lives in the public domain of our society, the investigation and 

conclusions from this research may lead to unexpected and uncontrolled secondary uses of 

the data.  

Data must always be preserved and protected to prevent misuse, misinterpretation, or 

exploitation in ways that could harm the participants or compromise their privacy.  

- Obtain informed consent from the participants, clearly stating the purposes of the 

research and any potential future use of the data. 
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- Store the data securely using appropriate encryption and access control measures. 

By using data encryption and security access protection. 

- Anonymise the data, removing any personally identifiable information (PII) that could 

be used to trace the data back to the participants. 

- Share the data with other researchers only when they adhere to ethical guidelines 

and the original consent conditions. 

- GDPR considerations. 

Ethic Principals 

GDPR 

Academic research (Greene et al., 2019) has responsibilities under the GDPR when it requires 

authors to submit datasets with personal data and subsequently store or process this data, 

and when published, results could lead to the reidentification of data subjects. 

It is also noted that GDPR does not apply when data are anonymous, but this is not true for 

pseudonymisation. GDPR identifies pseudonymised data in the Regulation as personal data 

affecting the practices of research studies that consider pseudonymised data non-personal 

data. In this regard, (Shabani and Borry, 2018) data access control and all other data protection 

must be applied to these data sets. 

Knowing these concepts will help to elaborate on the ethics and considerations for data on 

this research. 

Anonymity and Confidentiality 

All published results from primary research should ensure the anonymity and confidentiality 

of participants. This may involve using pseudonyms or coding systems and removing or 

altering identifying details. In addition, all participants of in-depth interviews can complete a 

waiver if they wish to be included in the Acknowledgements section of the final public report. 

Exploit Mitigations 

The findings of this research will be reported with clarity and Precision. This includes clear 

definitions of technical terms and avoidance of assumptions wherever possible. Limiting and 

identifying the context of the study water surface parameters, the primary and secondary data 

origin (maintaining privacy) and trustable and reliable sources. 

Access Control 
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Access to the encrypted disk with datasets will necessitate a combination of password and 

biometric authentication (“BIOMETRIC ENABLED ACCESS CONTROL,” 2021) (e.g., fingerprint 

recognition). This two-factor authentication process ensures an added layer of security for 

data stored by the researcher and supervisor. 

Limited Access 

Access to the transactions is restricted to the principal researcher, Raúl Martín Sánchez, the 

designated supervisor,  and professors of the CCT colleague. The principal researcher will be 

responsible for access control during the research phase. Once the research has been 

submitted for grading, it will be CCT Collegue and all individuals granted permission to handle 

this sensitive data and understand their responsibility to maintain its confidentiality. 

Audit Trail 

Any attempt to access the stored data, whether successful or not, will be logged and 

monitored. This includes tracking the access time, the identity of the person attempting 

access, and the files they interacted with. This audit trail contributes to the accountability of 

the data handlers and serves as a deterrent to unauthorised access. 

Data Storage 

The transcription and data generated from the depth interviews will be securely stored on an 

encrypted disk using BitLocker (De Clercq, 2012), a reliable full-disk encryption feature 

integrated into the Windows operating system that uses Advanced Encryption Standard (AES). 

It effectively safeguards the data from being accessed or compromised by unauthorised users. 

Data Retention and Destruction:  

Upon conclusion of the research, the data will be retained for a predetermined period per 

institutional guidelines or legal requirements (CCT College Dublin, 2020). After this period, all 

data will be securely and irreversibly destroyed. The method of destruction will adhere to best 

practices to ensure that no data can be retrieved or reconstructed. 
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4.2. Research Methodology 

In 1996, four leaders of the nascent data mining market  (Daimler-Benz, IntegralSolutions 

Ltd. (ISL), NCR, and OHRA) created CRISP-DM (Costa and Tiago Aparicio, 2020), a 

methodology focussed on data analysis which involves the realisation of 6 stages in an iterative 

process. This methodology was applied as part of the research methodology, with the different 

stages serving as a guiding framework.  

The initial stages saw a dynamic preparation process. This entailed a thorough   
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Literature Review and establishing the current state-of-the-art. Subsequently, in-depth 

interviews played a crucial role. Incorporating expert feedback with suggestions proved 

demanding, especially within the project’s limited timelines. This integration necessitated 

further refinement of data, and in some instances, certain propositions, like the exploration of 

water flow and levels, were sidelined due to the unavailability of historical data.  

Business Understanding 

During the “Business Understanding” phase, the selection of critical water parameters was 

revised. The goal was to introduce standalone and hybrid methods to enhance predictive 

accuracy, focusing primarily on inferring the biological status (QValues). 

Understanding 

The “Understanding” phase demanded a rigorous literature review, feedback, and analysis 

of in-depth reviews to gain a comprehensive grasp of the available data. 

The initial two stages were pivotal in enhancing understanding and refining the project’s 

objectives. Such was their impact that some technical objectives underwent reprioritisation, 

and two research objectives were re-evaluated and replaced.  

A notable shift was moving away from the aim of producing predictions on the final chemical 

pollutants through individual time series analysis. This endeavour warrants its standalone 

study, leading to the decision to narrow the focus to the classification of the QValue survey 

exclusively. Furthermore, given that QValues are produced once every three years, providing 

water stakeholders with estimated QValues results annually or monthly (depending on when 

chemical results are becoming available) at an accuracy of 83% (see best model) offers 

immense potential. This can guide improvement initiatives, ensuring that subsequent QValue 

surveys move in a more informed direction. 

 

Data Preparation 

“Data Preparation” included dealing with missing data points across stations and addressing 

null values. Decisions had to be made about datasets that lacked comprehensive historical 

records across all stations. Data normalisation, column merging, and managing imbalanced 

river types using oversampling were among the many tasks undertaken. 

Consequently, four distinct datasets emerged, capturing aggregated results of prior chemical 

data since the QValue survey. These datasets spanned different time intervals: 6 months, one 

year, two years, and an all-encompassing dataset as per Key Decision Records DR3.  
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By integrating varied combinations, including using PIP layers and focusing on the top 7 

correlated chemical parameters or the entire set, 12 unique dataset combinations were 

curated. 

Modelling 

The “Modelling” phase included a consistent preprocessing of all datasets using a specific 

pipeline in pyspark. This involved indexing string fields, assembling vectors for categorical 

values, scaling features (between 0 and 1), and indexing classification statuses (dependent 

variable). Multiple models were evaluated, including RandomForestClassifier, Forward Multi-

layer Perceptron (using pyspark and tensorflow), Naive Bayes Classifier, and Linear Support 

Vector Classifier. The Feed-Forward Multi-layer Perception, exceptionally executed in 

TensorFlow (Developers, 2023), exhibited higher versatility due to its parameter 

adjustments and fine-tuning flexibility. 

 

Evaluation 

For “Evaluation”, metrics such as accuracy, F1 score, Precision, and recall were generated 

for model inter-calibration. Visualisation aids like the Confusion Matrix plot and the Learning 

Curve were also employed in the case of Neural Networks. 

 

Deployment 

Finally, in the “Deployment” stage, while reserved for the leading researcher, a public 

dashboard using Streamlit Cloud is available (Irish River's Biological Status Prediction · 

Streamlit (biological-status.streamlit.app)), and upon publishing of this work a facility to 

allow users to input data to test the predictive capabilities of the finalised models can be 

discussed. 

5. Depth Interviews 

A series of in-depth interviews were conducted with experienced biologists. These discussions 

offered insights into expert and historical viewpoints, including the last 20 years evolving shifts 

in water parameters and their potential reasons, the direct correlations between chemical 

changes and observed biological trends and the implications of these shifts on operational 

processes.  

https://biological-status.streamlit.app/
https://biological-status.streamlit.app/
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The conversations highlighted the preventative strategies of the EPA, their methodologies for 

monitoring, and their synergistic endeavours with other entities, as well as exploring the 

significance of Machine Learning and Artificial Intelligence, evaluating their potential in 

forecasting the Biological Status and other essential Water Quality Indices. 

The transcript has been analysed using thematic analysis (Wæraas, 2022) to identify key 

themes and subthemes (Figure 4) that are in the scope of the research objectives in order to 

gain a better understanding and insights related to the surface water parameters and their 

implications for the WQI, from the perspective of the five domains identified (Monitoring 

Historic Results, Risks, Water Flow and Pollutants). 

Theme Analysis
Historical DataPollutants

Monitoring Sensor DataWater Flow

PIP Layers

Risks

Land use

BOD Oxygen Conditions

NutrientsNitrate

Ammonia

SalinityConductivity

pH / Alkalinity

Water Quality 

Degradation

Swifts in consumer 

habits

 

FIGURE 4: THEME ANALYSIS 

In the intricate realm of water quality, chemical parameters, rainfall, water flow and other 

anthropogenic pressures were discussed to unveil how biological status is affected. To address 

this, discussions took place with three water experts and biologists proficient in the nuances 

of water quality.  

The core motivation behind these interviews lies in uncovering details that could potentially 

enhance modelling accuracy and highlight aspects of water quality determinants that might 

traditionally be overlooked. The discussions emphasised the significance and method of 

integrating chemical data, especially its temporal relevance to the QValue survey, 

understanding the broader array of water quality determinants like the influence of socio-

economic and environmental events, and establishing an exhaustive list of critical pollutants 

that validate the selection used in this study. 

From these sessions, 5 pivotal decisions (Table 1: Interviews Key Decision Records) emerged 

that encompass integrating innovative features such as the Pollution Impact Potential (PIP) 

Layers, refining the incorporation timeframe for chemical data, recognising historical events 

influencing water quality trends, and incorporating a comprehensive list of pollutants. The 
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integration and final model performance are analysed later during the iterative refinement 

process of the dataset. 
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5.1. Key Decision Records 

TABLE 1: INTERVIEWS KEY DECISION RECORDS 

ID Decision Source Rationale Decision 

DR1 Include PIP layers in 

models. 

Interviewee 1 Introduce PIP (Pollution Impact Potential) Layers as 

features of the training dataset. With current 500 meter 

buffer definition. This will be expressly used to integrate 

the risks associated with Nitrate and Phosphorus. 

Accepted 

DR2 Investigate Water Flow 

and Hydrometric Gauges 

Interviewee 2 Investigate water flow patterns and the current status of 

hydrometric gauges in Ireland. Given its impact on water 

flow, the potential inclusion of rainfall analysis will be 

considered. 

Dismissed 

 

Due to time constraints and limitations of available 

public hydrometric gauges and historical data, 

incorporating this information was not feasible.  

DR3 Relevance of Chemical 

Data 

Interviewee 3 Consider different periods to aggregate chemical data with 

the reference point of the QValue survey. Historical 

chemical data may not be relevant to QValue survey. 

Consider the following aggregations.  

- 6 months since QValue survey. 

- 1 year 

- 2 years 

- All available   

Accepted 

DR4 Incorporate time 

context (year) 

Interviewee 1,2,3 The model will factor in historical data and significant shifts 

in trends. This will include events like the 2008 economic 

downturn, political changes, the removal of EU legislation 

quotas in 2010, and evolving consumer habits. Including 

Accepted 
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the year in the model ensures recognition and adjustment 

for these time patterns. 

DR5 Pollutants Interviewee 1,2,3 The dataset will assessed for the inclusion of some of the 

following pollutants: Nutrients (Ammonia, Nitrate, Nitrite), 

Phosphorus (Total, orthophosphate as P), Oxygen 

conditions (BOD) 

Accepted 

DR6 Combine conductivity 

@20 and @25 degrees 

Interviewee 1 There is no significant temperature difference; therefore, 

it can be considered the same parameter. 

Accepted 
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5.2. Interviewee 1 
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FIGURE 5: INTERVIEWEE 1 THEME ANALYSIS 
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5.3. Interviewee 2 

WATER UTILITIES - PHD STUDENT- RESEARCHER LEAD - BIOLOGIST 
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FIGURE 6: INTERVIEWEE 2 THEME ANALYSIS 
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5.4. Interviewee 3 

REGULATORY AGENCY - RESEARCHER LEAD - BIOLOGIST 
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FIGURE 7: INTERVIEWEE 3 THEME ANALYSIS 
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6. Architecture 

This project employed a hybrid architecture of on-premise and cloud hosting, incorporating 

the following components: 

- Apache Spark VM: This virtual machine runs Ubuntu 20.04 and comes equipped with 

Apache Spark 3.2.3 and Jupyter Hub to facilitate big data processing and interactive 

code execution. 

- Hadoop VM: This virtual machine operates on Ubuntu 20.04 and features Hadoop 

Standalone 3.2.4, enabling distributed storage and processing using the MapReduce 

framework. 

- Research laptop: Windows 11 professional with Apache Spark and Hadoop. 

- Github: Code repositor. 

TABLE 2: INFRASTRUCTURE 

VM Name Operating 

System 

Software Version CPU Memory Ports 

Apache 

Spark 

VM Ubuntu 

20.04 LTS 

Apache Spark (“Apache SparkTM - Unified 

Engine for large-scale data analytics,” 

n.d.) 

3.2.3 4 14 GB 8000 

(Jupyter Hub) 

Hadoop VM Ubuntu 

20.04 LTS 

Apache Hadoop (Apache Software 

Foundation, 2023a) 

3.2.4 2 2 GB 9000, 9870, 9864 

Hadoop ports 

Researcher 

Laptop 

On-premise 

Windows 11 

Apache Spark / Hadoop Desktop 8 16Gb n/a 

Neo4j 

Cloud 

Cloud Neo4j Graph DB Latest n/a n/a 443 

Streamlit 

Cloud 

Cloud Streamlit server Latest n/a n/a 443 
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FIGURE 8: ARCHITECTURE DIAGRAM 

7. WQI Dataset 

The EPA of Ireland provides a rich repository of publicly accessible data for the research 

community. In this study, multiple resources have been scrutinised. Although the dataset 

comprises various data categories, particular emphasis has been placed on the Data Flow and 

PIP layers. While the former layers were not folded into the final dataset, their relevance to 

the investigation justifies a comprehensive delineation. 

 

7.1. Data sources 

TABLE 3: DATA SOURCES 

Source Description Access to dataset 

EPA Geoportal Monitoring Stations Mon_QStations_19012023.zip 

EPA Geoportal Hydrometric Gauges MON_HydrometricGauges_08092022.zip 

EPA Geoportal River Water bodies cycle 2 WFD_RiverWaterbodies_18012021.zip 

EPA Geoportal River Water bodies cycle 3 WFDRiverWaterbodies_27042017.zip 

EPA Geoportal Historical QValues. Mon_QRecords_19012023.zip 

http://gis.epa.ie/data/Mon_QStations_19012023.zip
http://gis.epa.ie/data/MON_HydrometricGauges_08092022.zip
http://gis.epa.ie/data/WFD_RiverWaterbodies_18012021.zip
http://gis.epa.ie/data/WFDRiverWaterbodies_27042017.zip
http://gis.epa.ie/data/Mon_QRecords_19012023.zip
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(dependent variable) 

EPA 

Catchments 

Chemistry Data (EPA 

Ireland, 2023) 

https://wfdapi.edenireland.ie/api 

EPA Geoportal PIP layers PollutionImpactPotential_Data_Nov2021.zip 

Hydronet Hydrometric Gauges 

Monitoring results 

https://epawebapp.epa.ie/Hydronet 

 

 

7.2. Water level and flows. 

Data Flow is primarily sourced from real-time hydrometric gauges scattered across Ireland. A 

holistic list of 2,455 such stations can be accessed at EPA’s GIS portal. Real-time and historical 

data about flow and water levels are catalogued on Hydronet.  

This study has discussed this topic with different biologists on how water level and flow rates 

play an important role in determining the chemical characteristics of river systems. This 

interaction is especially pronounced in intermittent rivers, which experience alternating wet 

and dry periods. The flow, or lack thereof, can significantly influence the monitoring results 

for various reasons: 

Concentration Fluctuations:  

In intermittent rivers or ephemeral streams, (Gómez et al., 2017) during low flow or dry 

periods, there might be an increased concentration of certain chemicals due to the reduced 

volume of water. When flows resume, these concentrations can dilute rapidly, leading to 

transient spikes or drops in chemical levels. 

Sediment Interaction: 

The flow rate can impact sediment suspension. Higher flows can resuspend settled particles, 

which might have absorbed various chemicals. Conversely, during low flows, the settling of 

particles can remove chemicals from the water column. As discussed with biologists for this 

study, this is particularly the case for periods of heavy rain or storm water (Nogaro and 

Mermillod-Blondin, 2009), which is also why they do not take samples during such events, 

allowing for a few days to settle before a new sample can be taken. 

While Ireland might not grapple with the challenges posed by intermittent rivers as acutely as 

some other European regions, particularly in the south, understanding the dynamics is still 

https://wfdapi.edenireland.ie/api
http://gis.epa.ie/data/PollutionImpactPotential_Data_Nov2021.zip
https://epawebapp.epa.ie/Hydronet
https://gis.epa.ie/GetData/Download
https://epawebapp.epa.ie/Hydronet
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crucial. In regions experiencing more pronounced seasonality or facing increasing water 

scarcity due to climate change, the intermittency of rivers becomes a significant factor. The 

chemical oscillations induced by these fluctuations directly impact the ecological status of 

these water bodies, affecting both the fauna and flora dependent on them. 

Therefore, a river’s Q-values or ecological status, for instance, certain species, might thrive in 

higher concentrations of specific nutrients or pH levels. Thus, the interplay between flow, 

water level, and chemistry determines the river’s overall ecological health. 

Yet, the intersection of the GIS dataset revealed that only 77 stations offered accessible 

historical data, whereas the water flow dataset includes 56 stations. Additionally, there is a 

need for post-processing to align the chemistry monitoring stations with their corresponding 

hydrometric gauge. The map below illustrates the distance between these points, indicating 

a necessity for further data refinement. Due to these complexities, these metrics are omitted 

from the scope of this study. Refer to Key Decision Records DR2. 

 

FIGURE 9: IRIS HYDROMETRIC GAUGES (BLUE) VS RIVER MONITORING STATION LOCATIONS (RED) 

 

7.3. Pollution Impact Potential maps. 

Features PIP_N, PIP_P, PIP_P_DeliveryPoints, and PIP_P_FlowPaths (EPA Catchments Unit, 

2021) are specific risk indicators of nutrient runoff and delivery mechanisms to the water 
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bodies. This is a direct measure of agricultural impact on water quality, indicating points where 

nutrient pollution is most likely to enter the water system. 

POLLUTANT IMPACT POTENTIAL (PIP) MAPS FOR NITROGEN (N) AND PHOSPHORUS (P) HAVE BEEN 

GENERATED TO SHOW THE HIGHEST RISK AREAS IN THE LANDSCAPE FOR LOSSES OF N AND P TO WATERS. 

THESE MAPS, INCLUDING FLOW PATHS AND DELIVERY POINTS, DO NOT INDICATE SPECIFIC AREAS THAT 

HAVE A PROBLEM, AND THEY ARE NOT DESIGNED OR SUITABLE TO BE USED ON THEIR OWN AS A BASIS 

FOR DECISIONS AT FIELD SCALE. THEY CAN BE USED HOWEVER TO TARGET MEASURES IN CATCHMENTS 

WHERE MONITORING DATA HAVE INDICATED THAT THERE IS A PROBLEM 

 

For this study, the pip layers were determined using the following method:  

The intersection with the monitoring station and its surroundings is a buffer area of 500 

meters, used to identify the highest risk within that zone. 

 

 

FIGURE 10: PIP LAYER BUFFER OF 500M 
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This approach, after consultation with biologists, was identified to have certain shortcomings 

or overlooked several critical aspects: 

- River flow direction. 

- Potential risks near the monitoring station might not pertain to the station due to their 

location outside the basin area or because the slope and runoffs do not influence the 

monitoring station. 

- Groundwater infiltration. 

A thorough examination of the river’s flow direction, main and sub-basin areas, and 

groundwater infiltration would be essential. However, owing to time constraints and 

practicality, the PIP layers were produced based on the initial definition. Later model 

evaluations indicated that including these four features enhanced the accuracy of the models’ 

final dataset by 1 point %, refer to Model Results (csv). While this might not seem like a 

significant improvement, considering that this data is freely available for relevant periods 

makes it valuable to include in the analysis. 

7.4. Biological Quality Value 

The QValueID and QValueScore serve as a direct measure of the biological quality of the river. 

The former assigns a numerical rating, while the latter provides a descriptive score. This allows 

for a more nuanced understanding of water quality compared to previously mentioned general 

classifications.  

 

7.5. Geographical Parameters: 

- Latitude and Longitude are specific geolocation points that can give spatial context to the 

water quality data. The authors of (Meyer et al., 2019), indicate that spatial autocorrelated 

variables may lead to overfitting. When incorporating these properties, outcomes from the 

test dataset do not seem to validate these concerns. However, another pressing concern is 

“generalisation.” Models can adeptly associate specific outcomes with locations and their 

histories. Nevertheless, there is no guarantee that monitoring stations will remain consistent 

in the future, as new stations could be established, existing ones could be replaced, or they 

might be relocated to different areas. These properties have been excluded from the study to 
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avoid compromising the model’s broader applicability, even at the potential cost of some 

prediction accuracy. 

- Altitude and slope might influence water flow and its quality. These geolocational 

parameters might not have been directly emphasised in the previous papers, but are crucial 

in understanding spatial variations in water quality. 

 

7.6. Geology and Typology: 

- Geology and River Type: The dataset provides parameters like Geology (Calcareous, Mixed 

or Silicious) and River Types. These parameters are updated depending on the year of the 

samples and the associated WFD characterisation cycle. For the current data set, this is WFD 

Cycle 2 and 3. 

 

 

FIGURE 11: IRELAND RIVER TYPES 

(KELLY-QUINN ET AL., 2005) 

Among all 2,319 monitoring stations in the study, River type 31 emerges as the predominant 

type, representing 46% of all stations. Following this, River type 11 constitutes 23%, and the 
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remaining 11 comprise less than 30%. This creates an imbalanced dataset on an important 

feature that could lead to misrepresentation of the minority of the river types in the models. 

 

FIGURE 12: OVERSAMPLING PROCESS FOR RIVER TYPES 

 

This oversampling (Mohammed et al., 2020) process is designed to balance out the 

representation of different river types in the dataset. It first identifies river types not 

represented as frequently as others and increases the number of entries of these under-

represented river types to match those with a higher presence. In essence, it ensures that no 

river type is under-represented by artificially increasing its count, resulting in a dataset where 

all river types have a more even representation. 

  

7.7. Size, System, and Protection: 

SizeCat and System offer insights into the water body’s scale and type, which can correlate 

with water quality. The mention of a ProtectedArea can signify areas of ecological or 

environmental importance. 
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7.8. Data Dictionary 

TABLE 4: DATA DICTIONARY 

 

Parameter Description Type 
CAS/EEA 

Number 

QvalueID 

Correlation 

T
a
rg

e
t QValueID 

Biological Quality Value Identifier: Values corresponding to 

classification status 
Numerical    

ClassificationStatus Bad, Poor, Moderate, Good and High Qualitative / Categorical     

S
it
e
 c

h
a
ra

ct
e
ri
sa

ti
o
n
 

Year Year Of QValue Survey occurs Qualitative / Discrete     

Geology Geology: Calcareous, Mixed or Silicious Qualitative / Categorical     

Type River Typology Qualitative / Categorical     

SizeCat Size Category in km2 of the immediate river water body polygon Numerical     

System System A, B or Unknown Qualitative / Categorical     

ProtectedArea Protected Area Qualitative / Categorical     

Slope Slope in metres/metre Numerical     

Altitude Altitude in metres of the water-body’s defining point Numerical     

C
h
e
m

is
tr

y
 d

a
ta

 

AlkalinitytotalAsCaco3Mgl Alkalinity total As Caco3 (mg/l) Numerical   -0.356864 

AmmoniatotalAsNMgl Ammonia total As N (mg/l) Numerical 
CAS_7664-

41-7 
-0.294154 

Bod5DaysTotalMgl Biological Oxigen Demand 5 Days Total (mg/l) Numerical 
EEA_3133-

01-5 
-0.315486 

ConductivityAtXXScm Conductivity At 20 or 25 Scm Numerical   -0.400701 

DissolvedOxygenPctSaturation Dissolved Oxygen % Saturation Numerical 
EEA_3131-

01-9 
0.310327 

NitrateAsNMgl Nitrate (as N) mg/l Numerical   -0.209959 
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TotalHardnessAsCaco3Mgl Total Hardness As Caco3 (mg/l) Numerical 
EEA_31-01-

6 
-0.368179 

P
IP

 L
a
y
e
r 

PIP_N_500_meters 

Associated Nitrate Risk. - PIP Rank 1 - PIP Rank 2 - PIP Rank 3 - 

PIP Rank 4 - PIP Rank 5 - PIP Rank 6 - PIP Rank 7 - PIP Rank 8  = 

NO RISK 

Qualitative / Categorical   

PIP_P_500_meters 

Associated Phosphorus Risk. - PIP Rank 1 - PIP Rank 2 - PIP Rank 

3 - PIP Rank 4 - PIP Rank 5 - PIP Rank 6 - PIP Rank 7 - PIP Rank 

8  = NO RISK 

Qualitative / Categorical   

PIP_P_Delivery_paths_500_meters 

Associated Phosphorus Risk Classification of delivery paths in a 

buffer of 500 meters of the monitoring station. - Very High 1 - 

High 2 - Medium 3 - Low 4 - None 5 (*) Default value when no 

risk exists 

Qualitative / Categorical   

PIP_P_FlowPaths_500_meters 

Associated Phosphorus Risk Classification of flow paths in a buffer 

of 500 meters of the monitoring station - Very High 1 - High 2 - 

Medium 3 - Low 4 - None 5 (*) Default value when no risk exists  

Qualitative / Categorical   
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7.9. Data storage 

Chemical Data 

 

Over 4.5 million records, precisely 4,610,145, containing chemical results were sourced from 

the (EPA Ireland, 2023) API. These records were methodically transformed into parquet 

files, each representing a distinct Irish subcatchment, and subsequently stored within the 

Apache Hadoop  (Apache Software Foundation, 2023a) HDFS storage system. By leveraging 

Apache Spark’s in-memory computing capabilities (Sharma et al., 2018), the data processing 

of this massive dataset became notably efficient. This efficiency facilitated the management 

of such extensive records and expedited the production of necessary queries and 

aggregations. The sheer volume of data and the power of in-memory computing ensured 

that data-driven insights could be gleaned promptly and reliably. 

 

GIS Data 

Integrating Geographic Information System (GIS) maps into the study offered a 

multidimensional approach to understanding the river ecosystem and its associated data. 

Using a combination of maps, the dataset was enriched with geographical, hydrological, and 

historical data, bringing a nuanced perspective to the analysis. 

• Monitoring Stations 

• River Water bodies cycle 2 

• River Water bodies cycle 3 

• Historical QValues. 

• PIP layers 

• Hydrometric Gauges 

The map layers described above have been processed utilising geopandas and intersected 

with the primary dataset in the parquet file repository. 
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8. Correlated Chemical Parameters: 

The list comprises a comprehensive set of chemical parameters that can influence water 

quality. These include alkalinity measures, Ammonia, oxygen levels, nitrates, nitrites, 

phosphate, pH, temperature, Hardness, colour, and more.  

 

 

FIGURE 13: PEARSON CORRELATION OF TOP 7 PARAMETERS WITH QVALUEID 

 

Not all of these parameters might have been discussed in the previous papers, but each plays 

a pivotal role in determining water quality. The final dataset includes the top seven parameters 

directly correlated positively or negatively with the QValueID; causation is explained to justify 

the selection and prioritisation of those versus the rest. 
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FIGURE 14: QVALUEID CORRELATION WITH MAIN PARAMETERS 

 

 

8.1. Combined Conductivity @20°C and @25°C µS/cm 

Conductivity at different temperatures indirectly measures the amount of dissolved salts or 

ions in water. These ions can come from various sources, including natural geological 

formations, agricultural runoff, wastewater discharges, and industrial processes. In the 

dataset for this study, the correlation with QValueID shows a moderate inverse correlation, 
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being the strongest of all other parameters at -0.4. Salinity tolerance and macroinvertebrates 

have been broadly studied. The authors (Dunlop et al., 2008) studied the salinity tolerance on 

over 100 macroinvertebrate taxa in 11 locations in Northeast Australia. 

The parameter was combined since the source dataset has different measurements taken at 

20°C and 25°C in different years. To preserve the integrity of this data and after consultation 

with biologists, a combined parameter was deemed appropriate. This decision was based on 

the observation that the temperature difference yielded nearly identical measurement results. 

 

 

FIGURE 15: CONDUCTIVITY RS01B010100 @20°C AND @25°C (SINCE 2015) FROM EXCEL 

8.2. Total Hardness (as CaCO3) mg/l 

 

Hard water often has a higher alkalinity, which can stabilise the pH by neutralising acids. This 

ensures a more stable environment, essential for many aquatic organisms. On the other hand, 

soft water with low Hardness may be more susceptible to pH fluctuations, which can impact 

aquatic life. In some cases (Kiyani et al., 2013) showing significant effects in terms of Cu and 

Zn toxicity in fish. 

 



 

51 September 22, 2023 

8.3. Alkalinity total As Caco3 Mg per litre: 

This parameter shows a moderate inverse correlation with QValueID (-0.356864). Causation 

of the same has already been probed in several studies exploring the acidification sensitivity 

of macroinvertebrates. For instance, the 1987 the authors of (Allard and Moreau, 1987) 

observed that experimental acidification significantly reduced the overall abundance of benthic 

macroinvertebrates, except Microtendipes sp, compared to a control group. 

 

8.4. BOD 5 Days Total Mg per litre 

 

Biochemical Oxygen Demand (BOD) over five days, or BOD5, measures the amount of oxygen 

microorganisms consume in decomposing organic matter within five days. It is expressed in 

milligrams of oxygen consumed per litre of sample during incubation, usually at a temperature 

of 20°C. It is a crucial parameter for the analysis. Given its relationship with ecological status 

(Phu, 2014).  

 

8.5. Ammonia total As N Mg per litre 

Ecological status can be affected by high ammonia levels as it can be toxic to aquatic life, 

particularly to fish. Several environmental factors influence its toxicity, such as pH, water 

temperature, and the specific species in question. 

 

8.6. Dissolved Oxygen % Saturation 

This parameter represents the concentration of oxygen dissolved in water as a percentage of 

the maximum amount that could be dissolved at that temperature and atmospheric pressure. 

In essence, it indicates the relative amount of oxygen present compared to the total amount 

that could be dissolved under current conditions. Low DO can significantly affect aquatic life, 

increasing the risk of deterioration of the ecological status. 
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8.7. Nitrate (as N) mg/l 

“Nitrate (as N) mg/l” represents the nitrate concentration in the water but only considering 

the nitrogen component of the nitrate compound. This is important for standardising 

measurements because nitrogen exists in various environmental forms, and focusing on the 

nitrogen component allows for consistent comparisons. 
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9. Data Preparation 

Processing of the raw data set required the following transformations: 

- Remove null values; “report result”: This feature considers measurements below 

the detection value. So, removing null results was the only necessary processing task. 

- Yearly aggregation: The example RDD query below is for the dataset of 6 months 

(~183 days) prior to the Qvalue Survey. 

    SELECT  

        q.MonitoringStationCode, 

        YEAR(q.DateOfSurvey) Year, 

        f. parameter, 

        AVG(CAST(f.ReportResult AS DOUBLE)) AS Mean_ReportResult, 

        q.QValueID, 

        q.QValueScore, 

        q.ClassificationStatus 

    FROM filtered_df_view AS f  

    INNER JOIN qvalues_agg_df_view q ON f.MonitoringStationCode = q.MonitoringStationCode 

    AND f.SampleDate < q.DateOfSurvey AND datediff(q.DateOfSurvey, f.SampleDate) <= 183 

    GROUP BY 

        q.MonitoringStationCode, 

        YEAR(q.DateOfSurvey), 

        f. parameter, 

        q.QValueID, 

        q.QValueScore, 

        q.ClassificationStatus 

 

- Remove duplicate QValue Survey:, on some occasions, for a given monitoring 

station, 2 or more QValues surveys were produced. In this situation, the latest 

completed survey of the year is considered.  

SELECT DISTINCT data.MonitoringStationCode, data.Year, data.QValueScore, data.QValueID, 

data.ClassificationStatus 

FROM 

( 

    SELECT DISTINCT 

    ROW_NUMBER() OVER (PARTITION BY StationCode, Year(DateOfSurvey) ORDER BY DateOfSurvey 

DESC) as Rank, 

    d.StationCode AS MonitoringStationCode, 

    YEAR(d.DateOfSurvey) Year, 
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    d.DateOfSurvey, 

    d.QValueScore, 

    d.QValueID, 

    d.Status AS ClassificationStatus 

    FROM qvalues_df_view d 

) AS data 

WHERE  

data.Rank = 1 # Select the last qvalue survey 

 

- Generate PascalCase parameter name. Preparing for pivoting the table. 

- Parameters first sieve: Parameters that has been used in at least more than 4000 

data points. The sieve was selected by reviewing the available dataset and balancing 

the appropriate number of data points that keep sufficient results from historical data 

for the last 20 years. 

- Combine conductivity columns: @20 and @25 degrees as per KDR6 (Key Decision 

Records) 

- Remove Monitoring Stations with less than 4 years of data: As QValues are 

produced every 3 years, chemical results for 4 years will only be significant to predict 

1 Qvalue, insufficient to infer the rest of the target years included in the study. 

- Replace nitrate and nitrate with total nitrate.  

- Remove parameters with insufficient samples: SuspendedSolidsMgl only 1200 

results available. 

- Filling GAPs or missing values: For monitoring stations where there are GAPs or 

missing values on the series, the average of the trend series is used to replace the 

missing. In the example below, back or forward fill would not have been applicable. 

 

FIGURE 16: MISSING VALUES DO SERIES 

The steps described above were repeated four times to generate group results in the four 

agreed testing periods: six months, one year, two years and all (Refer to Key Decision Records 

DR3).  
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For future references, we will name the dataset as dataset versions as follows: 

- Dataset v0: Use parameter average aggregation of all available data. 

- Dataset v1: Use parameter last six months’ average aggregation data prior QValue. 

- Dataset v2: Use parameter last one year average aggregation data prior QValue. 

- Dataset v3: Use parameter last two years’ average aggregation data prior QValue. 

The query below indicates the complete set of parameter selections after the first sieve is 

complete. Later, correlation analysis and PCA will be discussed to provide insight into the final 

dataset. 

    select  

        a.MonitoringStationCode,        a.Year,        a.AlkalinitytotalAsCaco3Mgl, 

        a.AmmoniatotalAsNMgl,        a.Bod5DaysTotalMgl,        a.ChlorideMgl, 

        a.ConductivityAtXXScm,  a.DissolvedOxygenMgl,        a.DissolvedOxygenPctSaturation, 

        a.NitrateAsNMgl,         a.NitriteAsNMgl,        a.TotalInorganicNitrogenAsNMgl, 

        a.OrthophosphateAsPUnspecifiedMgl,        a.PhPhUnits,        a.TemperatureC, 

        a.TotalHardnessAsCaco3Mgl,        a.TotalOxidisedNitrogenAsNMgl, 

        a.TrueColourHazen,        a.TrueColourMglitrePtCo, 

        a.QValueID,        a.QValueScore,        a.ClassificationStatus,        b.WBCode, 

        b.Geology,        b.Type,        b.SizeCat,        b.System,        b.ProtectedArea, 

        b.Slope,        b.Altitude,        b.Latitude,        b.Longitude,        b.PIP_N, 

        b.PIP_P,        b.PIP_P_DeliveryPoints,        b.PIP_P_FlowPaths 

    from data_spark_view a  

    inner join fulldataset b on a.MonitoringStationCode = b.MonitoringStationCode  

    and a.Year = b.Year 

 

10. Models 

10.1. Common Model Training Approach 

The following definition is common to all models utilised in the study. While there might be 

some slightly changes in particular when using tensorflow model versus the main pyspark 

ones. This ensures consistency in the results and allows for an easy model comparison and 

deployment. 

Model Preparation and Training: 

- Dataset selection: v0, v1, v2, v3. 

- Feature selection: PIP layers, Only Correlated Features.  

- Splitting 80-20 train and test datasets 
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- Oversampling: River Types and Classification Status. 

- Pipeline: Prepare dataset for model. String Indexer, Vector assemble, Scaled Features. 

- Model definition 

- Train model 

o Fine-tuning parameter grid. 

o Cross-validation with X folds. 

- Best model performance analysis: 

o Accuracy, F1 Score, Precision, and Recall. 

o Save model and results. 

- Plots:  

o Model visualization: depends on the model: decision tree or neuronal network 

with hidden layers) 

o Confusion Matrix 

o Learning Curve. 
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FIGURE 17: MODEL TRAINING STEPS 
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10.2. Naïve Bayes 44.88% 

The naive Bayes classifier (Apache Software Foundation, 2023b) is simple, efficient, and can 

handle large feature spaces. Rooted in the principles of Bayes’ theorem, this family of 

algorithms makes a ‘naive’ assumption of independence between every pair of features, 

thereby simplifying the computation of probabilities. This model was used first for these 

characteristics and to set the baseline benchmark before exploring more complex models.  

 

Using all available features, the model performs poorly in all dataset combinations and 

feature selection, achieving a 44.88% accuracy on the best execution. 

Results 

TABLE 5: NAIVE BAYES RESULTS 

Dataset 

Correlated 

Features Accuracy Precision F1 Score Recall 

V0 No 44.88% 45.59% 44.45% 44.88% 

V0 Yes 44.04% 44.17% 43.59% 44.04% 

V1 No 44.03% 46.47% 42.93% 44.03% 

V1 Yes 41.97% 42.28% 39.66% 41.97% 

 

10.3. Linear Support Vector Classifier 51.79% 

Support Vector Machine (SVM) is a supervised machine learning algorithm for classification 

and regression analysis. This binary classifier optimizes the Hinge Loss using the OWLQN 

(Orthant-Wise Limited-memory Quasi-Newton) optimisation and L2 regularization. 

The regularisation method proposed is the weighted L1-norm of the parameters for some 

constant C greater than 0. 

𝑟(𝑥) = 𝐶||𝑥||1 = 𝐶 ∑ |𝑥𝑖|

𝑖

 

(Andrew and Gao, 2007) 
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Using all available features, the model performs poorly in all dataset combinations and 

feature selection, achieving a 51.79% accuracy on the best execution. 

Results 

TABLE 6: SVM RESULTS 

Dataset 

Correlated 

Features Accuracy Precision F1 Score Recall 

V0 No 51.79% 49.71% 47.27% 51.79% 

V0 Yes 51.42% 48.23% 46.74% 51.42% 

V1 Yes 51.11% 49.60% 46.26% 51.11% 

V1 No 50.45% 46.86% 46.11% 50.45% 

 

 

10.4. Random Forest Classifier 83.21% 

Random Forest is a supervised learning algorithm; the term "forest" denotes the 

construction of an ensemble of decision trees, trained using the "bagging" method.  

The underlying principle of the bagging method is that amalgamating learning models 

amplifies the overall outcome.  

Pyspark Random Forest Classifier (Apache Software Foundation, 2023c) was utilized to train 

the test dataset after applying a pipeline and regularization. Various iterations of the model 

emerged, and they excelled across different training variations and configurations of the 

dataset and ensembles. The configurations below were proposed: 

Model 1 RF: Random Forest Classifier 

This configuration engages the primary dataset with pipeline configurations integrated. 

Model 2 RF-PCA: Random Forest Classifier with PCA 

Similar to model 1, this configuration incorporates a dimensionality reduction via Principal 

Component Analysis. 

Model 3 RF-ERT: Ensemble Random Forest Classifier by River Type 

This ensemble approach aims to alleviate the impact of oversampling mismatched river 

types. It processes a subset of the test dataset based on river type, eventually combining 12 

individual models. 
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Model 4 RF-EGT: Ensemble Random Forest Classifier by River Group 

Embracing a similar objective of diminishing the reliance on oversampling, this ensemble 

model clusters river types based on similar sampling counts within the test dataset. 

Only Models 1 and 2 are considered.  

Models 3 and 4 encountered overfitting issues, especially when addressing river types with 

sparse sample representation. This was evident for River types 22, 23, 24, 33, and 34. 

 

Results 

TABLE 7: RANDOM FOREST RESULTS 

Dataset Model 
Correlated 

Features 
Accuracy Precision F1 Score Recall 

V0 RF No 84.34% 84.22% 84.26% 84.34% 

V0 RF Yes 83.21% 83.03% 83.09% 83.21% 

V2 RF Yes 82.28% 82.06% 82.10% 82.28% 

V3 RF Yes 81.88% 81.60% 81.63% 81.88% 

V0 RF-PCA No 79.65% 79.49% 79.52% 79.65% 

V0 RF-PCA Yes 79.29% 79.08% 79.14% 79.29% 

V1 RF Yes 78.94% 78.59% 78.66% 78.94% 

V3 RF-PCA Yes 75.05% 74.71% 74.77% 75.05% 

V2 RF-PCA Yes 74.69% 74.32% 74.40% 74.69% 

V1 RF-PCA Yes 72.69% 72.61% 72.54% 72.69% 

 

The best model configuration coded as RF-01-v0-corr-pips offers a good balance of 

excellent accuracy performance of 83.21% using the seven correlated chemical parameters 

for its definition. The configuration below is detailed for reproducibility purposes. 

- model type: RF 

- dataset version: v0 

- correlated features only: true 

- pip layers: true 

- numTrees: 50 

- numClasses=5 

- numFeatures=16 

- bootstrap: True 

- cacheNodeIds: False 

- checkpointInterval: 10 



 

61 September 22, 2023 

- featureSubsetStrategy: auto 

- featuresCol: scaled_features 

- impurity: gini 

- labelCol: ClassificationStatus_index 

- leafCol: default 

- maxBins: 32 

- maxDepth: 30 

- maxMemoryInMB: 256 

- minInfoGain: 0.0 

- minInstancesPerNode: 1 

- minWeightFractionPerNode: 0.0 

- predictionCol: prediction 

- probabilityCol: probability 

- rawPredictionCol: rawPrediction 

- seed: -5741966080759870137 (Random) 

- subsamplingRate: 1.0 

 

The coefficient of determination R2, indicates how well the model's predictions match the 

actual outcomes; for the best model, this value is 0.7614, which means that approximately 

76.14% of the variability in the dependent variable (ClassificationStatus_index) can be 

explained by the model's independent variables (features).  

 

𝑅2 = 1 −
𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑆𝑆res)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆tot)
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FIGURE 18: RANDOM FOREST CONFUSION MATRIX (R2  0.7614) 

 

Given the confusion matrix above, while the model does exhibit a misclassification rate of 

17%, there is a silver lining. In more than 83% of the instances where it does misclassify, the 

error prediction is just one class above or below the actual class. This suggests that even 

when the model errs, it is not wildly off the mark but is usually close to the actual classification. 

This might mean this model could still be advantageous if slight deviations from the true 

classification status can be tolerated for practical applications.  
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For the WFD objective of achieving a minimum of good classification, and considering the 

model's behaviour as described, a model prediction of a classification status of "Moderate", 

there is a high likelihood that the true classification is either "Moderate" or lies just one class 

above or below it. Also, it is improbable that the true status is two or more classes away from 

"Moderate" and the risk of it being drastically different is relatively low.  

 

RF-01-v0-corr-pips explained: 

Explaining an ensemble model consisting of 50 decision trees, a max depth of 30 nodes, five 

classification categories, and 16 features poses some technical challenges. As complexity and 

number of combinations, it quickly explodes.  

For evaluation purposes, decision tree number one of RF-01-v0-corr-pips is presented. This 

single decision tree comprises 1706 tree nodes with over 121 thousand relationships created 

among all nodes and depths. 

 

 

FIGURE 19: SINGLE DECISION TREE GRAPH VISUALIZATION DECISIONS 

Visualisation is available under “Neo4j: Viz” tab on https://biological-

status.streamlit.app/models 

https://biological-status.streamlit.app/models
https://biological-status.streamlit.app/models
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The image above was produced by constructing a graph map of the decisions and plotting the 

relationships of the tree nodes. Trying to present +121k decisions on the screen will not be 

feasible, so tools such as neo4j allow zooming and pan capabilities to be crucial. Using the 

graph tool, it can zoom into individual nodes and follow the different choices and decisions 

that a single decision model can make. To enhance clarity and understanding of each node, 

descriptive text outlines the feature and decision values. This text aids in discerning the 

direction of subsequent steps, be it to the left node or the right one.. 

(:TreeNode {info: "If (Bod5DaysTotalMgl <= 0.04585080417456694)"})-[:DECISION {type: 

">0.04585080417456694"}]->(:TreeNode {info: "If (AmmoniatotalAsNMgl <= -

0.38364349029199574)"}) 

 

 

FIGURE 20: DECISION TREE GRAPH VIZ WITH ZOOM 

 

When narrowing down the interpretation to a single prediction based on a specific input entry, 

tracking the models' path and outcomes becomes more feasible. It becomes pretty direct to 

visualize all 50 decision trees and trace only the prediction route. Here is an illustration of a 

prediction path leading to “poor” classification. 
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FIGURE 21: DECISION TREE PREDICTION PATH - POOR CLASSIFICATION 
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In this example, the decision tree prediction vote is “Poor” and has reached this conclusion 

after taking ten steps. BOD > Ammonia > PIP_N > Altitude > DO > Year > Slope > 

Conductivity. 

 

FIGURE 22: DECISION TREE, SINGLE AMMONIA SECOND LEVEL LEAF EXAMPLE. 

10.5. Multilayer perceptron 74.91% 

Multilayer perceptron classifier (MLPC) is a classifier based on the feedforward artificial neural 

network. MLPC consists of multiple layers of nodes where each layer is fully connected to the 

next layer in the network with a final exit layer of 5 nodes associated with the Biological 

classification status.  Nodes in the input layer represent the input data before preprocessing 

in the pipeline (standard scaler, string indexer, etc. refer to Common Model Training 

Approach). All other nodes map inputs to outputs by linearly combining the inputs with the 

node’s weights w and bias b and applying an activation function. This can be written in matrix 

form for MLPC with K+1 layers as follows: 
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y(x)=fK(...f2(wT2f1(wT1x+b1)+b2)...+bK) 

On the best model, after hyperparameter tunning, the nodes in intermediate layers use ReLU 

function: 

f(x) = max(0,x) 

Nodes in the output layer use softmax function: 

f(zi)=ezi∑Nk=1ezk 

The number of nodes N in the output layer corresponds to the number of classes. The image 

below represents the definition of the best model coded as MLP-01-v0-corr-pips.keras. 

 

Model 1: MLP-01 

This model uses hyperparameter tunning and cross-validation for assessing the best 

configuration setup. This model uses a homogeneity in the number of neurons and activation 

function in all hidden layers. 

Model 2: MLP-02 

Custom model configured for heterogeneous configuration on the number of neurons, layers 

and activation functions per hidden layer. 
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FIGURE 23: CUSTOM HETHEROGENOUS NN MLP-02-V0-CORR-PIPS.KERAS 

 

Model 02 was initially established as the benchmark for the training model. However, 

surpassing the prediction results of this model demanded a considerable number of iterations. 

The training performance deteriorated as more neurons, hidden layers, and epochs were 

introduced to enhance the final prediction outcomes. Interestingly, the heterogeneous setup 

of the model emerged as an optimal configuration for this specific Neuronal Network and the 

encompassing dataset. Model 01 ultimately emerged as the superior model in this context. 

Further exploration into training this model using a heterogeneous approach would be 

beneficial. On a related note, the research by (Choudhary et al., 2023) delved into similar 

territory with significant success, tackling classification issues using what they termed a 

“Diversity Neuronal Network”. This network comprises neurons that evolve their activation 

functions, rapidly diversify, and then exceed the performance of homogeneous counterparts 
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in image classification and nonlinear regression tasks. The code for the DNN is accessible on 

GitHub, and a fork was utilized to process the WQI dataset for this study. Nevertheless, 

training the model demanded immense computational power and memory. An application was 

made to the Irish Centre for High-End Computing to access a supercomputer under a Class C 

project. However, this was not pursued further due to time limitations and response time 

durations.  

Results: 

Dataset 

Correlated 

Features Accuracy Precision F1 Score Recall 

V0 No 75.26% 74.79% 74.67% 75.26% 

V0 Yes 74.91% 74.87% 74.78% 74.91% 

V3 Yes 74.27% 74.48% 74.09% 74.27% 

V2 Yes 73.26% 72.93% 72.89% 73.26% 

V1 Yes 72.55% 72.07% 71.93% 72.55% 

V0 No 72.16% 71.96% 71.82% 72.16% 

V0 Yes 71.68% 71.21% 70.60% 71.68% 

V2 Yes 69.25% 68.32% 68.58% 69.25% 

V3 Yes 68.83% 68.23% 67.91% 68.83% 

V1 Yes 68.61% 67.37% 67.68% 68.61% 

 

MLP-01-v0-corr-pips.keras is the best model with an accuracy of 74.91% or correct 

predicted results, with a total of 52741 number of parameters for the training. 

Model: "sequential" 

_________________________________________________________________ 

 Layer (type)                Output Shape              Param #    

================================================================= 

 dense (Dense)               (None, 128)               2560       

                                                                  

 dropout (Dropout)           (None, 128)               0          

                                                                  

 dense_1 (Dense)             (None, 128)               16512      

                                                                  

 dropout_1 (Dropout)         (None, 128)               0          

                                                                  

https://github.com/sbs22021/DiversityNN
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 dense_2 (Dense)             (None, 128)               16512      

                                                                  

 dropout_2 (Dropout)         (None, 128)               0          

                                                                  

 dense_3 (Dense)             (None, 128)               16512      

                                                                  

 dropout_3 (Dropout)         (None, 128)               0          

                                                                  

 dense_4 (Dense)             (None, 5)                 645        

                                                                  

================================================================= 

Total params: 52,741 

Trainable params: 52,741 

Non-trainable params: 0 

 



 

71 September 22, 2023 

 

 

FIGURE 24: MLP-01-V0-CORR-

PIPS.KERAS 

 

FIGURE 25: MLP-01-V0-CORR-PIPS.KERAS TENSORFLOW SIMULATION 

(Carter, 2023) 

 

  

A dropout regularization rate of 20% is introduced after every hidden layer to mitigate 

overfitting in the model. For reproducibility purposes, the following configuration indicates 

the setup for the best model. 

- batch_size: 32 

- dropout: 0.2 

- epochs: 200 

- hidden_layers: 4 

- neurons: 128 

- optimizer: adam 
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Confusion Matrix 

 

FIGURE 26: MLP CONFUSION MATRIX (BEST MODEL) 

Learning curve  

 

FIGURE 27: MLP LEARNING CURVE (BEST MODEL) 
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The Multilayer Perceptron Classifier (MLPC), based on the feedforward artificial neural network 

architecture, demonstrated a robust performance in classifying the Biological classification 

status. With its layered structure, the model utilized the ReLU activation function for 

intermediate nodes and the softmax function for the output layer, optimizing the classification 

process. Post hyperparameter tuning, the model achieved an accuracy of 74.91%, with a 

precision of 74.87%, an F1 score of 74.78%, and a recall rate of 74.91%. Given these 

performance metrics, this MLPC model presents a solid foundation for predicting Biological 

classification status and can be a reliable tool in relevant applications. 
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11. Conclusions 

Analyzed the performance and characteristics of various models tested for the given problem, 

a few conclusions can be drawn: 

Dataset Model 
Correlated 

Features 
Accuracy Precision F1 Score Recall 

V0 RF Yes 83.21% 83.03% 83.09% 83.21% 

V0 MLP-01 Yes 74.91% 74.87% 74.78% 74.91% 

V0 RF-02 Yes 79.29% 79.08% 79.14% 79.29% 

V0 MLP-02 Yes 71.68% 71.21% 70.60% 71.68% 

 

Adhering to a consistent model training approach provides a standardized benchmark to 

evaluate various models against each other. This standardization, covering aspects like 

dataset selection, feature handling, and model tuning, aids in ensuring consistent and 

comparable results across the different algorithms. While Naïve Bayes provides a good starting 

point due to its simplicity and efficiency, it yielded only a moderate accuracy of 44.88% at its 

best in this context. In the same space, the SVM, known for its optimization properties and 

hinge loss optimization, also resulted in moderate performance with a maximum accuracy of 

51.79%. These two models were then left with their initial configuration and progressed 

towards a more complex model. In this case, Random Forest's Dominance was promptly 

revealed: Among all the algorithms tested, the Random Forest Classifier proved to be the most 

robust and high-performing, achieving an impressive accuracy of 83.21% in its best 

configuration. The strength of Random Forest lies in its ensemble methodology and ability to 

handle large feature spaces effectively.  

 

Multilayer Perceptron (MLP) delivered a commendable performance, with the best model 

achieving an accuracy of 74.91%. The use of activation functions like ReLU and softmax in 

various layers showcases the non-linearity and categorical nature of the classification problem. 

 

The high coefficient of determination (R^2) of 0.7614 for the best Random Forest model 

underscores its strength in predicting biological classification status. Further, its ability to often 

misclassify within a close range of the actual class enhances its reliability for practical 
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scenarios. As an extra benefit offered by the Random Forest Classifier, with just some level of 

sophistication and deep analysis, it can visually be described and explained following decision 

tree prediction routes. 

Visualization tools like neo4j provide an intuitive representation of the decision-making process 

within the ensemble, enhancing its interpretability. 

 

The models, particularly the Random Forest, demonstrate adaptability to different feature 

combinations, proving robust across different dataset variations and for the objective of 

achieving a precise biological classification status, the Random Forest model, particularly the 

RF-01-v0-corr-pips configuration, stands out as the most effective solution, balancing accuracy 

with interpretability, without undermining the results of the MLP that can also be considered 

for the same due to its significant accurate results. 

Lastly, it is essential to iterate and refine these models periodically, adapting to new data and 

continuously improving predictive performance for the desired application. 

12. Discussion and Future steps 

The research journey has unveiled multiple avenues and areas that, with sufficient time and 

resources, warrant deeper exploration for enhanced comprehension and utility. Several areas 

have been left open-ended, suggesting that delving into them might lead to further 

advancements. The following is a detailed exploration of these areas: 

 

Refinement of the PIP Layers Calculation: 

The methodology currently in place, which calculates a 500-meter buffer around the 

monitoring station, reveals potential areas of refinement: 

- River Flow Direction: The methodology does not consider the river's natural flow 

direction. Taking this into account could yield more accurate predictions and 

evaluations. 
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- Location-based Risk Assessment: Potential hazards near the monitoring station might 

not be correctly evaluated due to their location outside the basin or local slope and 

runoff factors that may exclude them from influencing the station. 

 

- Groundwater Infiltration: Groundwater's role in a region's water quality cannot be 

understated. The existing calculation might overlook the complexities of groundwater 

infiltration, a key factor influencing water quality. 

 

Analysis of Water Flow Patterns and Hydrometric Gauges: 

An in-depth exploration of water flow patterns and the current status of hydrometric gauges 

in Ireland is essential. Given the direct impact of rainfall on water flow, incorporating rainfall 

data could prove invaluable. Although these aspects were initially set aside due to time 

limitations and the restricted availability of public hydrometric gauge data, experts have 

emphasized their significance in affecting chemical and biological statuses. 

 

Exploration of Diversity Neuronal Networks: 

Preliminary findings suggest the potential prowess of Diversity Neuronal Networks. With 

adequate resources, infrastructure, and time, harnessing a diversity-driven approach might 

yield results previously unattained, particularly in the biological status classification challenge. 

These networks' intricacies might offer a fresh perspective on tackling and resolving current 

issues. 

This study has established a foundational framework, but the journey forward offers 

abundant opportunities for further research and enhancement. The insights derived from 

this research can serve as valuable references for upcoming researchers and industry 

specialists, facilitating well-informed decisions and spurring innovative approaches.  
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14. Annexes 

14.1. Annex I: Interviews 

DepthInterview-EPA 
DepthInterview-EPA

.docx
 

DepthInterview-water utilities 
DepthInterview-Wa

terUtilities.docx
 

Participant Consent Form 
Participant Consent 

Form.docx
 

2023-08-16 17.43.07 LC- Depth Interview - WQI 
transcription-14235

53601-EN.docx
 

2023-08-25 12.43.18 RW - Depth Interview - WQI Transcription-10089

98402-EN.docx
 

2023-08-29 11.09.53 DT - Depth Interview - WQI Transcription-13058

27341-EN.docx
 

14.2. Request HPC supercomputer 

CCT College - Raul 

Martin - HPC National Service Request Form.docx
 

14.3. Chemical parameters 

1,1,1,2-Tetrachloroethane µg/l 

 Coliform Bacteria (Total) 

MPN/100ml  PBDE 154 µg/l 

   

 1,1,1-Trichloroethane µg/l 

 Coliform Bacteria (Total) 

no./100mls  PBDE 28 µg/l 

 1,1,2,2-Tetrachloroethane µg/l  Colour Hazen  PBDE 47 µg/l 
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 1,1,2-Trichloroethane µg/l  Colour PtCo Units  PBDE 99 µg/l 

 1,1-Dichloroethane µg/l 

 Conductivity @ 25°C (on-

site) µS/cm  PCBs (Total) µg/l 

 1,1-Dichloroethene µg/l  Conductivity @20°C µS/cm  Pentachlorobenzene µg/l 

 1,1-Dichloropropene µg/l  Conductivity @25°C µS/cm  Pentachlorophenol µg/l 

 1,2,3-Trichlorobenzene µg/l  Copper - filtered mg/l 

 Perfluorooctane sulfonic acid (PFOS) 

µg/l 

 1,2,3-Trichloropropane µg/l  Copper - filtered µg/l  Perfluorooctanoic acid (PFOA) µg/l 

 1,2,4-Trichlorobenzene µg/l  Copper - unfiltered mg/l  Petrol Range Organics (Total) mg/l 

 1,2,4-Trimethylbenzene µg/l  Copper - unfiltered µg/l  Petrol Range Organics (Total) µg/l 

 1,2-Dibromo-3-Chloropropane µg/l  Copper - unspecified mg/l  Phenols (Total) µg/l 

 1,2-Dibromoethane µg/l  Copper - unspecified µg/l  Pheophytin a mg/m3 

 1,2-Dichlorobenzene µg/l  Cyanide (unspecified) mg/l  Picloram µg/l 

 1,2-Dichloroethane µg/l  Cyanide (unspecified) µg/l  Pirimiphos-methyl µg/l 

 1,2-Dichloroethene (Cis) µg/l  Cybutryne µg/l 

 Polyaromatic Hydrocarbons (PAH) -Sum 

µg/l 

 1,2-Dichloroethene (Trans) µg/l  Cypermethrin µg/l  Potassium - filtered mg/l 

 1,2-Dichloropropane µg/l  DDT (4-4’/P-P’isomer) µg/l  Potassium - unfiltered mg/l 

 1,3,5-Trimethylbenzene µg/l  Delta BHC / HCH µg/l  Potassium - unspecified mg/l 

 1,3-Dichlorobenzene µg/l  Depth m  Potassium IC - unspecified mg/l 

 1,3-Dichloropropane µg/l 

 Di(2-ethylhexyl) phthalate 

(DEHP) µg/l  Salinity 0/oo 

 1,3-Dichloropropene (Cis) µg/l  Diazinon µg/l  Salinity PSU 

 1,3-Dichloropropene (trans) µg/l 

 Dibromochloromethane 

µg/l  Salinity ppt 

 1,4-Dichlorobenzene µg/l  Dibromomethane µg/l  Salinity(Lab) 0/oo 

 2,2-Dichloropropane µg/l  Dicamba µg/l  Sample Remarks Descriptive 

 2,3,6,TBA µg/l  Dichlobenil µg/l  Selenium - filtered µg/l 

 2,4-D ng/l 

 Dichlorodifluoromethane 

µg/l  Selenium - unfiltered µg/l 

 2,4-D µg/l  Dichlorprop µg/l  Selenium - unspecified µg/l 

 2,4-DB µg/l  Dicofol µg/l  Silica (as Si) mg/l 

 2,6-Dichlorobenzamide µg/l  Dieldrin µg/l  Silica (as SiO2) mg/l 

 2-Chlorotoluene µg/l 

 Diesel Range Organics 

(Total) mg/l  Silver - unspecified µg/l 

 "4,4-DDD µg/l", 

 Diesel Range Organics 

(Total) µg/l  Simazine ng/l 

 "4,4-DDE µg/l",  Dimethoate µg/l  Simazine µg/l 

 4-Chlorotoluene µg/l 

 Dissolved Inorganic 

Nitrogen (as N) mg/l 

 Small Stream Risk Score (SSRS) 

Descriptive 
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 4-Isopropyltoluene µg/l 

 Dissolved Organic Carbon 

mg/l  Sodium - filtered mg/l 

 4-Nonylphenol µg/l  Dissolved Oxygen % O2  Sodium - unfiltered mg/l 

 AMPA ng/l 

 Dissolved Oxygen % 

Saturation  Sodium - unspecified mg/l 

 AMPA µg/l 

 Dissolved Oxygen % 

saturation O2  Sodium IC - unspecified mg/l 

 Alachlor µg/l  Dissolved Oxygen mg/l  Strontium - filtered µg/l 

 Aldrin µg/l 

 Dithiocarbamates - Sum 

µg/l  Strontium - unfiltered µg/l 

 Alkalinity-total (as CaCO3) mg/l  Diuron ng/l  Strontium - unspecified µg/l 

 Alkalinity-total (as HCO3) mg/l  Diuron µg/l  Styrene µg/l 

 Alkalinty as CaCO3 – Gran titration 

mg/l  E. Coli MPN/100ml  Sulphate mg/l 

 Aluminium - filtered µg/l  E. Coli cfu/100ml 

 Sum 1_IWW: PBDE 

28+47+99+100+153+154 µg/l 

 Aluminium - unfiltered mg/l  E. Coli no./100mls  Sum 3_IWW: HCHs µg/l 

 Aluminium - unfiltered µg/l  Endosulfan (Total) µg/l 

 Sum 4_IWW: 

Benzobfluoranthene+Benzokfluoranthen

e ng/l 

 Aluminium - unspecified mg/l  Endosulfan 1 / alpha µg/l 

 Sum 4_IWW: 

Benzobfluoranthene+Benzokfluoranthen

e µg/l 

 Aluminium - unspecified µg/l  Endosulfan 2 / beta µg/l 

 Sum 5_IWW: 

Benzog,h,iperylene+Indeno1,2,3,c,dpyre

ne µg/l 

 Ammonia-Total (as N) mg/l  Endrin µg/l  Sum 6_IWW: DDT+DDD+DDE µg/l 

 Ammonia-Total (as NH3) mg/l 

 Enterococci (Intestinal) 

MPN/100ml 

 Sum 7_IWW: Aldrin, Endrin,Dieldrin, 

Isodrin µg/l 

 Ammonia-Total (as NH4) mg/l 

 Enterococci (Intestinal) 

cfu/100ml  Suspended Solids mg/l 

 Anthracene ng/l 

 Enterococci (Intestinal) 

no./100mls  TOC (as NPOC) mg/l 

 Anthracene µg/l 

 Epichlorohydrin (C3H5CIO) 

µg/l  Temperature °C 

 Antimony - filtered µg/l  Epoxiconazole µg/l  Terbutryn ng/l 

 Antimony - unfiltered µg/l  Ethylbenzene µg/l  Terbutryn µg/l 

 Antimony - unspecified µg/l  Faecal coliforms cfu/100ml 

 Tetrachloroethene & Trichloroethene 

(Total) µg/l 

 Apparent colour Hazen 

 Faecal coliforms 

no./100mls  Tetrachloroethene µg/l 

 Apparent colour PtCo Units  Fats, Oils & Greases mg/l  Thallium - filtered µg/l 
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 Appearance (on Sampling) 

Descriptive  Fenitrothion µg/l  Thallium - unfiltered µg/l 

 Arsenic - filtered µg/l  Flow Rate m3 per hour  Thallium - unspecified µg/l 

 Arsenic - unfiltered µg/l  Flow Rate m3/s  Thorium - unspecified µg/l 

 Arsenic - unspecified µg/l  Fluoranthene ng/l  Time sampled Descriptive 

 Atrazine ng/l  Fluoranthene µg/l  Tin - filtered µg/l 

 Atrazine µg/l  Fluoride mg/l  Tin - unspecified µg/l 

 BOD (6days, No inhibition) mg/l  Fluoride µg/l  Toluene µg/l 

 BOD (7days, No inhibition) mg/l  Gauge Reading m  Total Hardness (as Ca) mg/l 

 BOD - 5 days (Total) mg/l  Glyphosate ng/l  Total Hardness (as CaCO3) mg/l 

 BOD(2d <5°C+5d incub. 20°C) 

mg/l  Glyphosate µg/l  Total Nitrogen mg/l 

 BOD, 5 days with Inhibition 

(Carbonaceous BOD) mg/l  Hexachlorobenzene µg/l  Total Oxidised Nitrogen (as N) mg/l 

 BTX + Ethyl benzene (Sum) mg/l  Hexachlorobutadiene µg/l 

 Total Petroleum Hydrocarbons 

Descriptive 

 Barium - filtered µg/l 

 Indeno(1,2,3-c,d)pyrene 

ng/l  Total Petroleum Hydrocarbons mg/l 

 Barium - unfiltered µg/l 

 Indeno(1,2,3-c,d)pyrene 

µg/l  Total Petroleum Hydrocarbons µg/l 

 Barium - unspecified mg/l  Iron - filtered µg/l  Total Phosphorus (as P) mg/l 

 Barium - unspecified µg/l  Iron - unfiltered µg/l  Total Phosphorus (as P) µg/l 

 Benzene µg/l  Iron - unspecified µg/l  Total Solids mg/l 

 Benzo(a)pyrene ng/l  Isodrin µg/l  Transparency m 

 Benzo(a)pyrene µg/l  Isopropylbenzene µg/l  Tributyltin µg/l 

 Benzo(b)fluoranthene ng/l  Isoproturon ng/l  Trichlorobenzene (all isomers) µg/l 

 Benzo(b)fluoranthene µg/l  Isoproturon µg/l  Trichloroethene (all isomers) µg/l 

 Benzo(g,h,i)perylene ng/l  Lead - filtered µg/l  Trichlorofluoromethane µg/l 

 Benzo(g,h,i)perylene µg/l  Lead - unfiltered µg/l  Triclopyr µg/l 

 Benzo(k)fluoranthene ng/l  Lead - unspecified µg/l  Trifluralin µg/l 

 Benzo(k)fluoranthene µg/l  Linuron ng/l  Trihalomethanes - Total µg/l 

 Beryllium - filtered µg/l  Linuron µg/l  True Colour Hazen 

 Beryllium - unfiltered µg/l  MCPA ng/l  True Colour PtCo Units 

 Beryllium - unspecified µg/l  MCPA µg/l  True Colour mg/litre Pt Co 

 Beta-BHC /Beta-HCH µg/l  MCPB µg/l  Turbidity FTU 

 Bifenox µg/l  Magnesium - filtered mg/l  “Turbidity NTUs”, 

 Boron - filtered µg/l 

 Magnesium - unfiltered 

mg/l  Unionised Ammonia - unspecified mg/l 

 Boron - unfiltered mg/l 

 Magnesium - unspecified 

mg/l  Uranium - filtered µg/l 
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 Boron - unfiltered µg/l 

 Magnesium IC - filtered 

mg/l  Uranium - unfiltered µg/l 

 Boron - unspecified mg/l 

 Magnesium IC - unspecified 

mg/l  Uranium - unspecified µg/l 

 Boron - unspecified µg/l  Malathion µg/l  Vanadium - filtered µg/l 

 Bromobenzene µg/l  Manganese - filtered µg/l  Vanadium - unfiltered µg/l 

 Bromochloromethane µg/l  Manganese - unfiltered µg/l  Vanadium - unspecified µg/l 

 Bromodichloromethane µg/l 

 Manganese - unspecified 

mg/l  Vinyl Chloride µg/l 

 Bromoform µg/l 

 Manganese - unspecified 

µg/l  Visual Inspection Descriptive 

 Bromomethane µg/l  Mecoprop ng/l  Volatile Organic Compounds µg/l 

 C10-C13 Chloroalkanes µg/l  Mecoprop µg/l  Xylenes (Total) µg/l 

 COD-Cr mg/l  Mercury - filtered µg/l  Zinc - filtered mg/l 

 Cadmium - filtered µg/l  Mercury - unfiltered µg/l  Zinc - filtered µg/l 

 Cadmium - unfiltered µg/l  Mercury - unspecified µg/l  Zinc - unfiltered mg/l 

 Cadmium - unspecified µg/l 

 Methylene Chloride / 

Dichloromethane µg/l  Zinc - unfiltered µg/l 

 Calcium - filtered mg/l  Mineral oils µg/l  Zinc - unspecified mg/l 

 Calcium - unfiltered mg/l  Molybdenum - filtered µg/l  Zinc - unspecified µg/l 

 Calcium - unspecified mg/l 

 Molybdenum - unfiltered 

µg/l  alpha BHC / Alpha-HCH µg/l 

 Calcium Hardness (as CaCO3) mg/l 

 Molybdenum - unspecified 

µg/l 

 alpha-Hexabromocyclododecane 

(HBCDD) µg/l 

 Calcium IC - filtered mg/l  Naphthalene µg/l 

 beta-Hexabromocyclododecane 

(HBCDD) µg/l 

 Calcium IC - unspecified mg/l  Nickel - filtered µg/l  gamma-BHC / HCH (Lindane) µg/l 

 Carbon Tetrachloride µg/l  Nickel - unfiltered µg/l  gamma-Hexabromocyclododecane µg/l 

 Chlorfenvinphos µg/l  Nickel - unspecified µg/l  meta + para-Xylene µg/l 

 Chloride mg/l  Nitrate (as N) mg/l  n-Butylbenzene µg/l 

 Chlorobenzene µg/l  Nitrate (as NO3) mg/l  n-Propylbenzene µg/l 

 Chloroform µg/l  Nitrite (as N) mg/l  o,p-DDT µg/l 

 Chloromethane µg/l  Nitrite (as N) µg/l  o,p-TDE µg/l 

 Chlorophyll mg/m3  Nitrite (as NO2) mg/l 

 ortho-Phosphate (as P) - unspecified 

mg/l 

 Chlorophyll µg/l 

 Nonylphenol ethoxylates 

(Sum) µg/l 

 ortho-Phosphate (as P) - unspecified 

µg/l 

 Chlorpyriphos Ethyl µg/l 

 Nonylphenol-diethoxylate 

µg/l  ortho-Phosphate (as PO4) mg/l 

 Chlorpyriphos µg/l 

 Nonylphenol-

hexaethoxylate µg/l  ortho-Xylene µg/l 
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 Chromium - filtered µg/l 

 Nonylphenol-

monoethoxylate µg/l  pH (on-site) pH units 

 Chromium - unfiltered µg/l 

 Nonylphenol-

pentaethoxylate µg/l  pH measured at: °C 

 Chromium - unspecified µg/l 

 Nonylphenol-

tetraethoxylate µg/l  pH pH units 

 Clopyralid µg/l 

 Nonylphenol-triethoxylate 

µg/l  para-tert-Octylphenol µg/l 

 Cobalt - filtered µg/l 

 Orthophosphate (as P) -

filtered mg/l  sec-Butylbenzene µg/l 

 Cobalt - unfiltered µg/l  PBDE 100 µg/l  tert-Butylbenzene µg/l 

 Cobalt - unspecified µg/l  PBDE 153 µg/l 
 

 

14.4. Model Results (csv) 

This file includes all results and model trains, which include overfitting models and other 

models not finally considered. 

results.csv

 

Abbreviations 

ANN Artificial Neural Network 

ARIMA Autoregressive Integrated Moving Averages  

Cl chloride  

CNN Convolutional Neural Network 

CODMn Permanganate Index  

DO Dissolved Oxygen 

DWT Discrete Wavelet Transform  

LSTM Long Short-Term Memory  

MAE mean absolute error  

NH3-N Ammonia Nitrogen 

NO3 nitrate 

Nox nitrogen oxides  

PCA Principal Component Analysis 

pH potential of hydrogen  
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RF Random Forest 

RMSE root mean square error  

SVM Support Vector Machine  

SVR Support Vector Regression  

TDS total dissolved solids  

TN Total Nitrogen 

TP total phosphorus 

TP total phosphorus 

WQI Water Quality Index 

WT Water Temperature 
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